Posters

Rapid Fire Poster Session: Wednesday 20th September 2023, 11:30 – 13:00

Special Interest Group: Advancing Precision in Additive Manufacturing 19th-21st September 2023

KU Leuven, Belgium

Processor Englanding euspen

Poster Session:

Thursday 21st September 2023, 11:10 – 12:10

Poster No.	Paper No.	Applications and Design
P1.02	AM23126	Influence of surface roughness parameters of additively manufactured die on the extrudates in polymer extrusion A.H. Aimon ¹ , G.Tosello ¹ , D.B.Pedersen ¹ , M. Calaon ¹ ¹ Technical University of Denmark (DTU), Department of Civil and Mechanical Engineering, Kgs. Lyngby, Denmark

Poster No.	Paper No.	AM Process Physics & Optimization
P1.03	AM23109	Adaptive masking for scaffold fabrication via high-resolution vat photopolymerization Alberto Basso ¹ , Javier Lopez Navas ¹ , Marina Artemeva ¹ , Anna Danielak ¹ and David Bue Pedersen ¹ ¹ Department of Civil and Mechanical Engineering, Technical University of Denmark
P1.04	AM23117	Porosity in CoCr components as a function of energy density A. Mex ¹ , S. Barrans ² , D. Großkreutz ¹ , P. Bills ² ¹ Frankfurt University of Applied Sciences, Germany ² University of Huddersfield, UK
P1.05	AM23118	Optimization of electron beam melting parameters for intricate vs. bulky geometries M. Wiele ¹ , M. Abulawi ¹ , X. Zhao ¹ , Z. Lin ¹ , C. Hulme ² , S. Dadbakhsh ¹ ¹ Production Engineering Department, KTH Royal Institute of Technology, Brinellvägen 68, Stockholm 11428, Sweden ² Department of Materials Science and Engineering, KTH Royal Institute of Technology, Brinellvägen 23, Stockholm 10044, Sweden
P1.06	AM23127	Improving surface finish in SLM additive manufacturing components by implementing remelting techniques A. Tawfik ¹ , C. Jackson ¹ , O. Armitage ¹ , R. Cawley ¹ , P. Bills ¹ , L. Blunt ¹ Future Metrology Hub, University of Huddersfield, UK
P1.07	AM23128	The effect of part orientation on achieving minimum lattice thickness in selective laser melting additive processing A. Tawfik ¹ , P. Bills ¹ , L. Blunt ¹ . <i>Future Metrology Hub, University of Huddersfield, UK</i>

P1.08	AM23147	Light-box set-up for the development of resins for vat polymerization additive manufacturing O. Degryse ¹ , JP. Zegwaart ² , L. De Vogelaer ¹ , P. Dubruel ² , S. Van Vlierberghe ^{2,3} , E. Ferraris ¹ ¹ Manufacturing Processes and Systems (MaPS), Department of Mechanical Engineering, KU Leuven, Jan Pieter de Nayerlaan 5, 2860 Sint Katelijne Waver, Belgium ² Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-bis, 9000 Ghent, Belgium ³ Brussels Photonics (B-PHOT), Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
P1.10	AM23156	Optimization of vat design in open-architecture mask-projection vat photopolymeri-zation platform using Finite Element Analysis Ignacy Marciniak ¹ , Anna Danielak ¹ , Alberto Basso ¹ , Javier López Navas ¹ , David Bue Pedersen ¹ Department of Civil and Mechanical Engineering, Technical University of Denmark

Poster No.	Paper No.	AM Machine Design, Performance & Control
P1.11	AM23121	Preliminary geometric tests of an open-source metal laser powder bed fusion system Magnus Bolt Kjer ¹ , Christian Leslie Budden ¹ , Venkata Karthik Nadimpalli ¹ , and David Bue Pedersen ¹ ¹ Technical University of Denmark, Institute of Civil and Mechanical Engineering, Denmark
P1.12	AM23123	Uncertainty Analysis of an augmented industrial robot Mojtaba Ahmadieh Khanesar, Samanta Piano, David Branson ¹ Manufacturing Metrology Team, Faculty of Engineering, The University of Nottingham, NG8 1BB, Nottingham, UK
P1.13	AM23138	Legacy laser powder bed fusion systems and obsolescence: Upgrading control systems Sebastian Aagaard ¹ , Magnus Bolt Kjer ¹ , David Bue Pedersen ¹ ¹ Technical University of Denmark

Poster No.	Paper No.	In-Process Metrology, Machine Learning & Data Fusion
P1.16	AM23134	In-situ fringe projection profilometry and spatter monitoring data fusion to predict mechanical properties in laser powder bed fusion additive manufacturing Haolin Zhang ¹ , Alexander N Caputo ² , Heyang Zhang ¹ , Md Mahmudul Hasan ¹ , Chaitanya Vallabh ¹ , Richard W Neu ² , Xiayun Zhao ¹ ¹ Department of Mechanical Engineering and Materials Science, University of Pittsburgh Pittsburgh, Pennsylvania 15261, USA ² George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

Poster No.	Paper No.	Metrology & Characterization
P1.17	AM23124	A single-click automated metrology demonstrator Adam Thompson, Sofia Catalucci, Luke Todhunter, Francisco U Hernandez Ledezma, Mojtaba A Khanesar, Zhongyi Michael Zhang, Mingda Harvey Yang, David T Branson III and Samanta Piano <i>Manufacturing Metrology Team, Faculty of Engineering, The University of</i> <i>Nottingham, NG8 1BB, UK</i>
P1.18	AM23132	Investigation of focal spot blurring and its deblurring to improve the metrological structural resolution of X-ray computed tomography in the surface metrology of additively manufactured parts X. Chen ^{1,2} , S. Lou ¹ , W. Zeng ¹ , X. Jiang ¹ , P.J. Scott ¹ and W. Sun ² ¹ Future Metrology Hub, University of Huddersfield, Huddersfield, HD13DH, UK ² Materials and Mechanical Metrology, National Physical Laboratory, Teddington, TW11 0LW, UK
P1.19	AM23148	Application of discrete Legendre polynomials for geometrical measurements of additive manufacturing parts using computed tomography R. Santander ^{1,2} , H. Haitjema ¹ , M. Janssens ² , W. Dewulf ¹ ¹ Department of Mechanical – KU Leuven ² Materialise NV
P1.20	AM23153	Dimensional accuracy of additively manufactured graded lattice structures based on X-ray microcomputed tomography Mahmoud Osman ^{1,2} , Fabrice Bernier ³ , Priti Wanjara ² , Javad Gholipour ² , Roger Pelletier ³ , Marjan Molavi-Zarandi ³ , Mathieu Brochu ¹ ¹ Department of Mining and Materials Engineering, McGill University, Montréal, QC, H3A 0C5, Canada ² National Research Council Canada, Montréal, QC, H3T 1J4, Canada ³ National Research Council Canada, Boucherville, QC, J4B 6Y4, Canada