insp*i*re

1

Challenges and Solutions for Thermal Compensation of Machine Tools

EUSPEN SIG 2024 Eindhoven

Konrad Wegener, Josef Mayr, Sebastian Lang, Nico Zimmermann, Petr Kaftan, Lenny Rhiner 14.03.2024

Challenges and Solutions for Thermal Compensation of Machine Tools

Introduction

- Cooling aspects fluidic topics
- Thermal compensation of different machine tools
- Thermal behavior in cutting operation
- Federated learning of thermal behavior

Conclusion

inspire

ETH zürich

INSTITUTE Für Werkzeugmaschinen und Fertigung Institute of Machine Tools and Manufacturing

inspire

ETH zürich

IWF Institut für Werkzeugmaschinen und Fertigung Institute of Machine Tools and Manufacturing

Compensation Motivation for thermal compensation

- Conventional view: Resource based
 - Thermal stability can only be reached with cooling and air conditioning
 - Enhancement of work piece accuracy and yield only with warm up cycles
 energetic efforts necessary
- Advanced view: Knowledge based
 - Optimization of work piece accuracy without additional utilization of energy
 - Countermeasures by control and existing actuators
 - Mastering of thermal behaviour (knowledge based)
- Combination of accuracy and sustainability: don't move heat around

insp/re

ETH zürich

INSTITUTE Für Werkzeugmaschinen und Fertigung Institute of Machine Tools and Manufacturing

Sensor technology	Modelling	Actuator Technology
NC-program	Physical field equations	Cooling, heating
Power intake of components	Reduced physical field equations	Axes of machine
Temperature measurements	Thermobalance models	Additional axes
Elongation measurements	Phenomenological models	
Position measurements	Al approach, neural networks	

Institut für Werkzeugmaschinen und Fertigung Institute of Machine Tools and Manufacturing

Introduction

- Cooling aspects fluidic topics
- Thermal compensation of different machine tools
- Thermal behavior in cutting operation
- Federated learning of thermal behavior

Conclusion

inspire

ETH zürich

INSTITUTE Für Werkzeugmaschinen und Fertigung Institute of Machine Tools and Manufacturing

Influence of rotary axes: example

Institut für Werkzeugmaschinen und Fertigung

Institute of Machine Tools and Manufacturing

Measurement of location errors at 6 different rotational speeds

inspire

4h warm up phase / 4h cool down phase

2nd lag element is the influenced by convective heating of the spindel

Time

CFD simulation of enclosures: 5-axis machine tool

- Heat generation with C-axis rotation and temperature measurement on wall of enclosure
- Understanding of the machine behavior only possible with fluiddynamics influence (aerodynamic and coolant)
- Sensor placement by CFD

P1, P2, P3, P4: temperature sensors

IWF

Institut für Werkzeugmaschinen und Fertigung Institute of Machine Tools and Manufacturing insp/re

Fluidic topics Meta models for hollow spaces in machine tools

- Naked machine tools behave different than enclosed ones
- Realistic boundary conditions required
- Efficient way to calculate the heat transfer coefficient h in an enclosure without doing CFD simulations

Pavlicek 2019

ETH zürich

INSTITUTE Institut für Werkzeugmaschinen und Fertigung Institute of Machine Tools and Manufacturing

Solution for hollow spaces

inspire

Institut für Werkzeugmaschinen und Fertigung Institute of Machine Tools and Manufacturing

Fluid flow – CFD simulations - ANSYS CFX boundary conditions

Fluid flow – CFD simulations – Results coolant flow

insp*i*re

- Steady state simulations
 - Visualize coolant flow propagation above and in grinding gap
 - Share of grinding gap flow
 - Includes impact of air flow
 - Combination of single jets
- Workpiece surface temperature
 - Heat source in grinding gap
 - Conduction: into workpiece
 - Convection: cooling fluid and airflow
 - Temperature distribution on workpiece and in grinding gap
 - Impact of single nozzles

HTC: brilliant assumption

ETH zürich Institut für Weinstitute of M

Challenges and Solutions for Thermal Compensation of Machine Tools

- Introduction
- Cooling aspects fluidic topics
- Thermal compensation of different machine tools
- Thermal behavior in cutting operation
- Federated learning of thermal behavior
- Conclusion

inspire

INSTITUTE Institut für Werkzeugmaschinen und Fertigung Institute of Machine Tools and Manufacturing

insp*i*re

ETHZÜRICH Institut für Werkzeugmaschinen und Fertigung Institute of Machine Tools and Manufacturing

14

Self-learning thermal error compensation models

insp*i*re

- Characteristics
 - Data-driven models with ARX-structure
 - Automatic determination and recalibration of the models
 - Autonomously triggered on-machine measurements
 - Input selection upon model update after clustering of sensors
- Advantages
 - Long-term stability in case of changing boundary conditions
 - "Optimization" of the trade-off between precision and productivity
 - No detailed knowledge about the thermal behavior required
 - *y*: Thermal error *u*: Temperature

- Autonomously triggered on-machine measurements
- Measurements during recalibration

-Modell

$$y[k] = -\sum_{i=1}^{n_a} a_i \cdot y[k-i] + \sum_{n=1}^{N} \sum_{j=0}^{n_b(n)} b_{j(n)} \cdot u_n[k-j]$$

IWF

Institut für Werkzeugmaschinen und Fertigung Institute of Machine Tools and Manufacturing

- Novelty detection model for every sensor mounted on the MT Novelty model update **On-machine** measurement Yes Novelty Identifying conditions differing Threshold detection exeeded? from the already available models training data No Machine tool Compensation Temperature models ACL measurements Exceedance of the novelty exeeded? <u>|</u>| threshold triggers an on-machine measurement Yes Input selection + NG Mode Model update Update of the novelty detection
 - Zimmermann 2022

insp/re

Institut für Werkzeugmaschinen und Fertigung Institute of Machine Tools and Manufacturing

IWF

models after on-machine

measurements

ETH zürich

Physics Informed Training for Thermal Compensation

Real Machines

Requirements: Validated simulation model Correct physical parameters: - HTC

inspire

- coefficient of thermal expansion
- heat conductivity also across internal boundaries and contacts
- Young's modulus

ETH zürich Institut für Werkzeugmaschinen und Fertigung Institute of Machine Tools and Manufacturing

IWF

5-axis milling machines

Characteristics

- Superposing of a high number of axis-specific thermal errors at the TCP
- Housing and hollow spaces
- Fluid and chips
- Touch trigger probes for on-machine measurement cycles

Example model inputs

- Structural temperatures: 26 sensors
- Ambient temperatures: 4 sensors
- Cooling fluid temperatures: 3 sensors
- 15 individual errors identified

insp/re

In-Process measuring cycle for 5-axis machines

Position 1	Position 2	Position 3	Position 4	Position 5
$A = 0^{\circ}, C = 0^{\circ}$	$A = 90^{\circ}, C = 0^{\circ}$	$A = 90^{\circ}, C = 90^{\circ}$	$A = 45^{\circ}, C = 90^{\circ}$	$A = 0^{\circ}, C = 90^{\circ}$
Y Z	S S S S S S S S S S S S S S S S S S S	A CONTRACTOR OF	A REAL REAL REAL REAL REAL REAL REAL REA	
Position 6	Position 7	Position 8	Position 9	Position 10
$A = 0^{\circ}, C = 180^{\circ}$	$A = -90^{\circ}, C = 180^{\circ}$	$A = -90^{\circ}, C = 270^{\circ}$	$A = -45^{\circ}, C = 270^{\circ}$	$A = 0^{\circ}, C = 270^{\circ}$

ETH zürich

INF Institut für Werkzeugmaschinen und Fertigung Institute of Machine Tools and Manufacturing

19

Swiss type lathes

insp*i*re

Characteristics

- Several TCPs
- Often no touch trigger probe available
- Sensitive to door opening effects
- Driven tools

Model inputs

- Structural temperatures: 33 sensors
- Ambient temperatures: 3 sensors
- Cooling fluid temperatures: 2 sensors

ETH zürich

Institut für Werkzeugmaschinen und Fertigung Institute of Machine Tools and Manufacturing

Swiss-type lathe measuring concept

Turning-milling machines

Challenges:

- 2 WCPs
- 7 axes
- Separation of axis errors
- No standard available
- Load cycles turning & milling

ETH zürich

Institut für Werkzeugmaschinen und Fertigung Institute of Machine Tools and Manufacturing Sensor placement:

- Close to position measuring heads,
- Close to frictional heat sources,
- Workpiece spindles (in milling machines the table),
- Tool spindle head,
- Environment of the machine,
- Working area and places within the housing,
- All main structural elements,
- Coolant temperatures at different places in the coolant lines.

Geometrical probing of Turning Milling Machines

Geometrical probing of Turning Milling Machines

insp*i*re

Only groups of location errors can be distinguished 19 representative location errors for compensation

Workpiece spindle 1	Workpiece spindle 2	Milling spindle
E_{X0w1}	E_{X0w2}	E_{B0X}
E_{X0C1}	E_{X0C2}	E_{A0Y}
E_{Y0C1}	E_{Y0C2}	E_{C0Y}
E_{A0C1}	E_{A0C2}	E_{Z0B}
E_{B0C1}	E_{B0C2}	E_{A0B}
		E_{COB}
		E_{X0t}
		$E_{Y0t} \rightarrow Bad$ condition
		E_{Z0t}

Alternative for initial calibration: double spindle analysis

ETH zürich

IWF

Institut für Werkzeugmaschinen und Fertigung Institute of Machine Tools and Manufacturing

Results of a thermally compensated 5-axis machine tool

Volumetric thermal errors of a 5-axis machine tool

Time [h]

Statistical distribution of the volumetric errors at all measurement positions for the whole time series

Volumetric RMSE:

inspire

30.7 µm → 4.8 µm reduction 87%

INFIERE

26

Thermal errors of a Swiss type lathe

insp*i*re

Sudden working space condition changes by opening and closing of doors.

Calibration Phase

ETH zürich

Institut für Werkzeugmaschinen und Fertigung Institute of Machine Tools and Manufacturing

Thermal compensation of sudden working space condition changes by opening and closing of doors in swiss-type lathe machining. Machine Door Open

ETH zürich

IWF Institut für Werkzeugmaschinen und Fertigung

Institute of Machine Tools and Manufacturing

Challenges and Solutions for Thermal Compensation of Machine Tools

- Introduction
- Cooling aspects fluidic topics
- Thermal compensation of different machine tools
- Thermal behavior in cutting operation
- Federated learning of thermal behavior
- Conclusion

inspire

INSTITUTE Institut für Werkzeugmaschinen und Fertigung Institute of Machine Tools and Manufacturing

Evaluation of thermal compensated machine tools under machining conditions

insp*i*re

 Evaluation of the axis-specific thermal errors – identification of single errors

➔ Dry and wet maching of Aluminium

- ➔ Thermal behaviour of the workpiece is not yet included
- ➔ Analysis of the thermal error compensation at additional working space positions

- Developed at IWF (ETH Zürich), and defined in ISO 10791-10:2022
- Considered thermal errors of a rotary axis for nine time steps
 - X-direction: E_X
 - Y-direction: E_Y
 - Z-direction: E_Z
 - Radial direction: E_{TTP}
- Characteristics:
 - Diameter: 160 mm
 - Material: aluminium

ETH zürich

insp/re

Institut für Werkzeugmaschinen und Fertigung Institute of Machine Tools and Manufacturing

32

Compensation results for the TTP error in Z-direction

ETH zürich

Institut für Werkzeugmaschinen und Fertigung Institute of Machine Tools and Manufacturing

Evaluation of the self-learning thermal error compensation during simultaneous 5-axis milling

- Using impellers to evaluate thermally compensated 5axis machine tools
 - Offering repeating features
 - Free-form surfaces for 5 axis interpolation
 - Enabling relative analysis of thermal errors
 - Already used to evaluate geometrical compensation strategies
- Characteristics of the used impeller
 - Number of blades: 11
 - Blade thickness: 1 mm
 - Finishing of all blades with the same NC-code
 - Material removal during finishing: 100 µm

Institut für Werkzeugmaschinen und Fertigung Institute of Machine Tools and Manufacturing

Comparison between the uncompensated and the compensated impeller

insp*i*re

Uncompensated

Compensated

Challenges and Solutions for Thermal Compensation of Machine Tools

- Cooling aspects fluidic topics
- Thermal compensation of different machine tools
- Thermal behavior in cutting operation

Federated learning of thermal behavior

Conclusion

inspire

INSTITUTE Für Werkzeugmaschinen und Fertigung Institute of Machine Tools and Manufacturing

Connectivity for thermal compensation

- Can trained models be exchanged between machines:
 - same type
 - same type series but different size
 - same class

ETH zürich

Mayr 2022

insp*i*re

Institut für Werkzeugmaschinen und Fertigung Institute of Machine Tools and Manufacturing

IWF

- Same type
- Difference in equipment
- Different age and wear state
- Different environmental conditions
- → Teaching effort significantly smaller
- → Better learning results with worse environment

Stoop, Sulz,... 2022

ETHzürich **IWF** Institut für Werkzeugmaschinen und Fertigung Institute of Machine Tools and Manufacturing

Challenges and Solutions for Thermal Compensation of Machine Tools

- Introduction
- Cooling aspects fluidic topics
- Thermal compensation of different machine tools
- Thermal behavior in cutting operation
- Federated learning of thermal behavior

inspire

ETH zürich

INSTITUTE Institut für Werkzeugmaschinen und Fertigung Institute of Machine Tools and Manufacturing

Conclusion

- Compensation approaches:
 - Field equations
 - Model order reduced field equations
 - Phenomenological self learning models
- Cooling simulation in all aspects still lacks suitable heat transfer coefficients
- Long term stable thermal compensation possible with ARX models and input selection
- Different approaches for different types of machine tools necessary
- Thermal test pieces demonstrate the thermal movements of machine tools
- Full thermal compensation of five axis machine tools works even with five axis interpolation
- Federated learning among machine tools possible and able to bridge at least differently equipped machines
- Open challenges:
 - Accuracy in FEM simulations (physical parameters)
 - Fluid and air influence (convection, flow, heat transfer, evaporation, exhaust, covers)
 - Thermal memory and time delay
 - Mechanical interfaces
 - Thermal behavior of workpiece

INSTITUTE of Machine Tools a

Institut für Werkzeugmaschinen und Fertigung Institute of Machine Tools and Manufacturing The support of MTTRF, San Francisco is greatly acknowledged

hosted by ETH Zürich, IWF

INSTITUTE Institut für Werkzeugmaschinen und Fertigung Institute of Machine Tools and Manufacturing

42

insp*i*re

zürich

Institut für Werkzeugmaschinen und Fertigung Institute of Machine Tools and Manufacturing