ThermoFisher SCIENTIFIC

Model based drift compensation after sample load

Jelle Tosseram Ronald Lamers Jeroen Theeuwes Marcel van Wensveen

13 March 2024 euspen Conference

The world leader in serving science

Content

- Introduction
- Problem statement
- System description
- Root cause
- Modeling method
- Results
- Improvements
- Summary & conclusion

Introduction

- Thermo Fisher Scientific Eindhoven develops and produces Transmission Electron Microscopes (TEM).
- Industries
 - Life science
 - Material science
 - Semi conductor
- Throughput at quality

Problem statement

Sample location

 Throughput at quality for the semi conductor industry

Issue:

 Sample drift w.r.t optical axis after sample holder insert

Impact:

- Motion blur
- Distortion

Problem statement

Goal:

 Reduce sample drift w.r.t optical axis after sample holder insert

Issue:

• What causes the sample to move w.r.t optical axis after sample holder insert?

Holder insertion:

 Stage heat load activates → impulse heat load

Holder insertion:

- Stage heat load activates → impulse heat load
- 2. Thermal contact holder with stage:
 - Mechanical contacts
 - Conduction across airgaps and O-rings
 - Radiation

11 jelle.tosseram@thermofisher.com | euspen Conference | 13 March 2024

System description

Holder insertion:

- Stage heat load activates → impulse heat load
- **2.** Thermal contact holder with stage:
 - Mechanical contacts
 - Conduction across airgaps and O-rings
 - Radiation
- 3. Radiation between holder and cold trap

Holder insertion:

- Stage heat load activates → impulse heat load
- 2. Thermal contact holder with stage:
 - Mechanical contacts
 - Conduction across airgaps and O-rings
 - Radiation
- Radiation between holder and cold trap
- Holder heat load switched on → step heat load

X_{Octagon,Stage} **Expansion path:** Dominant drift direction: X X_{Octagon, Stage} Stable (no temperature change) X_{HolderGuidingTube} Large expansion length X_{HolderTip} Small expansion length X_{HolderTip} X_{HolderGuidingTube}

Root cause

Root cause:

- Thermal effects
 - Switching heat loads
 - Temperature differences after sample holder load
- Main expansion path
 - Holder guiding tube
 - Tip of the holder

Solution:

- Passive compensation
- Active compensation

jelle.tosseram@thermofisher.com | euspen Conference | 13 March 2024 15

Modeling method

- Lumped element modeling
 - Thermal mass ٠
 - Resistance •
 - Environment •
- 400+ lump model
- Identify different thermal effects
- Give suggestions on what to measure ٠ during tests
- Use the model for active drift compensation •

D7

Lumped element model + Sensor inputs

Model inputs:

- Temperature of the sensor
- Holder insert moment
- Holder retract moment
- Switching of heat loads

Sample manipulating stage

 Move in the opposite direction of the predicted drift

Results

Temperature results

- Kalman filter
- Lump temperature close to measured temperature

Results

Temperature results

- Kalman filter
- Lump temperature close to measured temperature

Drift results

- 12 minutes earlier within spec
- Improvement in the first 20 minutes
- Measurement noise sometimes out of spec

Improvements

Summary & conclusion

- Thermal effects \rightarrow sample drift w.r.t. optical axis
- Thermal modeling
 - Understand effects
 - Active drift compensation
- Good results for the number of available sensors
- More sensors are required to productize model-based drift compensation

Thank you for listening!

21 jelle.tosseram@thermofisher.com | euspen Conference | 13 March 2024