Thermal error compensation for large heavy duty milling-boring machines

Gorka Aguirre, Aitor Pérez de Nanclares, Harkaitz Urreta

gaguirre@ideko.es

euspen SIG Thermal Issues 2014

Zurich, CH

Outline

Large heavy duty milling-boring machines

Thermal error management

Thermal Error Compensation System

General considerations

Large heavy duty milling-boring machines

Thermal error management

Thermal Error Compensation System

General considerations

Thermal error management strategies

Temperature control

Minimize temperature variations in the machine

Design for thermal error reduction

Minimize errors at TCP generated by temperature changes

Thermal error compensation

Compensate remaining errors at TCP

Temperature control

Minimize temperature variations in the machine

Heat sources

- Bearings around spindle area
- Ambient temperature, not controlled
- Hydrostatic bearings
- Hot chip falling against machine
- Motors

Cooling units

- Minimize temperature variations, but limited by high required power.
- Dangerous, cooling circuits can be a disturbance source
- Might be too expensive

Main thermal issues

Heavy duty: high heat generation, spindles can rate up to 88kW

Large machine: error amplification with increasing workspace

Applications

Heavy duty milling and boring

Large parts, high precision

Oil&gas, wind energy, aeronautics, etc.

Large machines

Vertical travel up to 8m

Longitudinal travel up to 60m

Multiple spindles/quills with automatic changer

Large machine: error amplification with increasing workspace

Thermal error management strategies

Temperature control

Minimize temperature variations in the machine

Heat sources

- Bearings around spindle area
- Ambient temperature, not controlled
- Hydrostatic bearings
- Hot chip falling against machine
- Motors

Cooling units

- Minimize temperature variations, but limited by high required power.
- Dangerous, cooling circuits can be a disturbance source
- Might be too expensive
Design for thermal error reduction

Minimize errors at TCP generated by thermal changes in the machine

Application of precision design principles
 Machine design is focused on stiffness
 Precision is important, but it comes next

Focus on avoiding bending errors
 Linear errors are ‘easy’ to compensate
 Bending errors are more difficult to compensate at TCP
 Bending errors change tool orientation

Thermal error compensation

Estimate and compensate thermal errors during machine operation

Thermoelastic machine model
 Relate thermal error with temperature field, spindle speed, position in workspace
 Can be based on simulations (FEM) and/or measured data

Implementation
 Experiments/simulations to characterize model
 Simulation model running on CNC/PLC

Impact
 Low-cost solution, big improvements are possible
 Risk of lack of robustness

Thermal Compensation System

Main objectives
 Robust and effective compensation method:
 Improve machine accuracy, never make it worse
 Minimize machine occupation time:
 Fast machine characterization method
 Multiple heads, one 8h shift per spindle head and quill
 Simple to implement
 By machine operator
 Automate the process
 Flexible
 Compatible with main CNC systems
 Full range of machines/spindles/quills

Experimental setup

Software in external laptop
 Data acquisition from CNC/PLC and displacement sensors
 Generate movement program for CNC
 Automatic model fitting
 Automatic generation of compensation tables

Hardware
 Several measuring points within workspace
 - RAM and quill positions
 - Spindle orientations
 Thermally stable measurement targets

Implementation in machine control

Variety of controllers
 Siemens Sinumerik
 Fanuc
 Heindenhain
 Fagor Automation

Data acquisition
 Temperature from embedded sensors
 Machine axis positions

Compensation in CNC/PLC
 Application on CNC PC
 Embedded code in PLC

Compensation results: spindle head

All results are normalized to the maximum measured value
General considerations

- Do not be too ambitious. Focus on dominant errors.
 - Smaller effects are more difficult to characterize, and
 - They might affect robustness.

- Compensation model structure:
 - The simpler the better. Improve sensor location before adding complexity.
 - Temperature and machine position as only inputs to the model.

- FE can be useful.
- Improve design and cooling elements (Minimize bending deformations).
- Find optimal sensor location (structural elements, near heat source, near linear scales).
 - Not for compensation, experiments are needed if high precision is required.

Careful with cooling systems

- Keep machine temperature constant, not at 20ºC.
- Discard transient effects.

- Keep in mind industrial feasibility:
 - Minimize machine occupation time.
 - Simple procedure to be implemented by operators.
 - Be aware of control requirements/limitations.

- Special applications with extreme requirements:
 - When possible, re-think the manufacturing steps (CAM).
 - Add many more sensors, use some math tricks (e.g., POD) to find best correlating ones.
 - Take time to properly characterize the effect of ambient temperature.

Thank you!