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Abstract 
This paper presents an approach for classifying the machining operation conditions of a machine tool using temperature 
measurements from key points of the machine tool structure. Classifying data and measuring the similarity of datasets can improve 
the compensation of thermal error by enabling empirical models to adapt to changes in machining conditions. This would extend the 
long-term use of the models beyond the conditions used to train the models. In this presentation, Proper Orthogonal Decomposition 
is used to extract features from the temperature data. The features are used by a long short-term memory model to classify the data 
into three classes according to the spindle speed used when recording the data. The presented approach achieves high prediction 
accuracy and can be used to measure similarities in datasets.    
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1. Introduction 

Thermal errors are a major source of errors in machine tools 
with estimates attributing 50% of waste production in machined 
components [1] to thermal errors. Data driven models be 
conveniently used in the compensation of thermal errors. Such 
models learn to predict the thermal error from inputs which are 
mostly temperature measurements of key points on the 
machine tool. However, the accuracy of the predictions drops 
when the machining conditions (e.g. spindle speeds, feed rates, 
and depth of cut used) differ from those used to obtain the 
training data. Moreover, obtaining training data is time 
consuming and expensive. Empirical thermal error models are 
thus constrained to learn from a limited number of examples of 
temperature measurements and the corresponding thermal 
error at the tool centre point (TCP). Therefore, long term use of 
empirical thermal error models requires strategies for handling 
conditions which were not part of the training data.  

One such strategy is performing periodic model updates [2] to 
continuously update the model regardless of whether the 
machining conditions have changed or not. Another strategy 
involves intermittent model updates where a method of 
determining changes in the machining conditions is used to 
trigger model updates [3]. Another strategy involves training 
multiple models for different conditions and switching between 
the models depending on the prevailing conditions [4]. These 
methods lack a means of quantifying the amount of change or 
similarity in the machining conditions from the data. Quantifying 
this change would avoid unnecessary updates in the first 
strategy. It would also enable reuse of previously seen data that 
may is similar to the prevailing conditions when retraining 
models in the second strategy. This would improve efficiency by 
reducing process intermittent probing needed to obtain new 
training data. It could also guide the determination of the 
number of multiple models to train in the model switching 
strategy instead of using arbitrary number of models.  

This presentation builds upon previous studies [5, 6] on finding 
a measure for the changes in the machining conditions using 

temperature data from key points of the machine tool. The 
studies used Proper Orthogonal Decomposition (POD) to extract 
features (POD modes) representing the direction of change in 
the machine tool’s thermal state over a period. These features 
could then be classified using K-Means clustering and a distance 
metric such as the cosine distance [5]. Hidden Markov Models 
with Gaussian Mixture Model emissions (GMM-HMM) can also 
be used to measure the similarity of the extracted features [6]. 
GMM-HMM models rely on the Markov assumption which 
states that the current hidden state is only affected by the 
immediate past hidden state. The hidden state in this case is the 
prevailing machining condition. Challenges such as the presence 
of noise in the extracted features may require the inference 
window to extend back in time beyond the Markov assumption. 
This present work seeks to extend the inference window using 
the Long Short-Term Memory (LSTM) recurrent neural network 
model. The next section introduces LSTM models. This is 
followed by a presentation of the methodology used in this 
work. A discussion of the results obtained using the approach 
conditions is then presented.  Finally, concluding remarks from 
the study are presented. 

2. Long Short-Term Memory (LSTM) models      

Hochreiter and Schmidhuber [7] introduced  LSTMs to 
overcome the challenge of using gradient based learning with 
recurrent neural networks. LSTM models prevent the back 
propagated error from shrinking or exploding by using a series 
of three gates to control the flow of information through the 
network as shown in Figure 1. The first gate controls how much 
past information is retained in the hidden state. The second gate 
controls how much new information from the instantaneous 
input (𝒙𝒕) is added to the hidden state. While the third gate 
controls what output (𝒉𝒕) is obtained from the hidden state. 
Sigmoid functions (𝜎) and hyperbolic tangent (tanh) functions 
are used at various points as activation functions. 
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Figure 1. Structure of a LSTM neural network model 

3. Methodology      

Nine air cutting experiments were performed on a three-axis 
vertical machine tool. Data from these experiments was used to 
determine how effective an LSTM model could classify 
temperature data into three classes of machining conditions: 
low spindle speed (4,500 rpm), medium spindle speed (6,000 
rpm), and high spindle speed (8,000 rpm). A fixed feed rate of 
15,000 mm/min was used but the spindle speed for each 
experiment was selected from a list of spindle speeds (4,500 
rpm, 5,000 rpm, 6,000 rpm, 8,000 rpm, and 9,000 rpm). The 
temperature of the machine tool was measured at 10 Hz 
resulting in datasets labelled A to H. Training data was obtained 
from datasets A, F, and H to represent the low, medium, and 
high spindle speeds respectively. POD analysis was performed 
on the temperature data by sliding a window containing 20 
timestamps to obtain features (POD modes) for the data within 
the window [6]. The LSTM model took a sequence of 50 past 
features and predicted the probability of conditions represented 
by each of the three classes occurring at the end of the 50 
features. The LSTM model used in this study had a sequence of 
eight layers: a sequence input layer, two pairs of an LSTM layer 
followed by a dropout layer, a fully connected layer, a softmax 
layer, and a classification output layer. The next section presents 
the results from testing the model on datasets A through H. 

4. Results and discussion      

A summary of the model’s predictions is shown in Table 1.  
 
Table 1. LSTM predictions of the number of positive predictions (P+), 
negative predictions (P-) and percentage of positive predictions (P+ %). 

 
 

The model correctly classified over 74% of the samples in 
datasets D and E as medium spindle speed data.  Over 97% of 
the samples from datasets G and I were also correctly classified 
as high spindle speed data. The model learnt patterns in the 
training data that enabled these predictions. The accuracy of the 
model was high for classes separated by a significant spindle 
speed such as the medium spindle speed and high spindle speed. 
The accuracy of the model decreased when classes had close 

spindle speed values such as the low and medium spindle speed 
classes as seen in the results for datasets B and C whose spindle 
speeds differ by 500 rpm. This observation can be ideal when 
determining if data from different machining conditions is 
similar. In this case data obtained from close spindle speeds has 
high similarity resulting in the low prediction accuracy.  

The probability scores from the LSTM model for dataset D are 
shown Figure 2. The model had difficulties predicting samples 
regions when the machine tool is cooling down such as the 
period before the eighth hour. Such periods can be detected 
using the singular values from POD analysis [6] and appropriate 
action taken to improve the model’s accuracy. 
 

 
 

Figure 2. Probability scores for classifying dataset H using LSTM model. 

5. Conclusion      

A method for classifying the machining conditions from 
temperature data using POD analysis and LSTM modelling was 
presented. The LSTM model gave a probability score of whether 
temperature data belonged to a set number of classes. These 
probability scores can act as similarity measures and 
incorporated in the modelling of thermal errors in machine 
tools. Further work is being carried out to improve the model’s 
accuracy and incorporate the model’s output in the modelling of 
thermal errors in machine tools. 
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