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Abstract 
Thermal errors present a major hurdle in maintaining positioning accuracy in cutting machine tools. Model based compensation 
methods can predict the thermal error and reduce it via control-internal offsets. There are numerous such compensation models. 
For complex machine tool designs and under realistic working conditions, however, all of these methods still have not eliminated the 
thermal error reliably. The GeoComp project attempts to improve the accuracy of thermal error predictions by breaking down the 
error into individual assemblies along the kinematic chain and using the best suited compensation model for each error component. 
To demonstrate this on the DMU 80 evo, the kinematic chain for the z-direction of the column error was set up. Using three simulated 
load cases, the thermal error of this kinematic chain was examined and a compensation model for the dominant Z-slide error 
component was computed using a characteristic diagram. Once the training database has been extended, similar compensation 
models will be created for all assemblies and the resulting hybrid model will be tested and evaluated. 
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1. Introduction 

Thermal errors in cutting machine tools refer to relative 
displacements between cutting tool (TCP) and workpiece as a 
result of thermal influences. Thermal influences may, e.g. be 
waste heat from the machine or the cutting process (electric 
losses, friction, etc.) or ambient temperature changes. Even 
after decades of research, thermal errors continue to reduce the 
machining precision and can lead to reduced productivity or 
even scrap. 

An effective method for reducing thermal errors during 
machining is thermal error compensation, which involves the 
measurement or model-based prediction of the thermal error 
with a subsequent application of a corresponding positioning 
offset in the machine tool control. There are four main types of 
compensation methods.  

The first type uses correlative compensation models. They use 
correlations between input data (mostly temperatures sensors) 
and output data (relative TCP displacement) to predict the 
current thermal error based on these measured sensor values. 

One recent example is the compensation model based on 
Gaussian process regression developed by Miao et al. [1], which 
proved to be superior to ridge regression, principle component 
regression (PCR), thermal autoregressive with exogenous input 
(ARX) and long short-term memory (LSTM) neural network 
models when tested under different working conditions in an 
investigation on a Vcenter-55 three-axis machine tool. In 
another work by Chen et al. a standard neural network with 
hyperparameter optimization and correlation based input 
variable selection to minimize collinearity was successfully 

employed to reduce the thermal error of an AWEA VP-2012 
gantry machine tool by between 30 and 90 % [2].  

The second type uses characteristic/phenomenological 
models to map the transfer function between input/excitation 
(waste heat, ambient temperature, etc.) and output/response 
(displacement). One of the early examples of this is the use of 
first and second order time-delay transfer functions. Brecher et 
al. have used such a model to deal with both internal heat 
sources from spindle and three kinematic axes and from the 
ambient temperature via measurement based model training 
and thereby achieved an error reduction of more than 80% [3]. 

The adaptive learning control using ARX models (TALC) 
developed by Blaser also falls into this category [4]. It uses a 
specially developed on-machine measurement cycle to achieve 
self-adaptability of the compensation model parameters. 

Horej et al. used a similar ARX model as a basis and updated it 
for untrained thermal load cases by adding transfer functions. In 
their investigation, this improved the prediction accuracy as 
measured by RMSE from 56% to 92% without needing to change 
the original model parameters [5]. 

The third type uses online-capable simulation models, which 
are most often model order reduced (MOR) FEM simulations. 
This requires the accurate modelling of the geometry the 
prevailing boundary conditions along with a good 
parametrization of the model parameters, as is described by Ess 
[6]. Ihlenfeldt et al. use such models in what they call structure 
model based correction and have developed a method for 
updating the model parameters to account for changing 
ambient conditions or machine tool wear [7]. 

The fourth type uses direct TCP measurements of the full TCP 
displacement or of local component deformations. Brecher et al. 
use integrated deformation sensors (IDS), essentially long CFRP 



bars with a 1D displacement sensor, to measure the lengthening 
and bending of large machine assemblies combined with a 
geometric-kinematic model to compute the corresponding TCP 
displacement [8]. In an investigation on a three-axis vertical 
machining center, this enabled them to reduce the thermal error 
by over 85% in the most critical direction. 

Overall, there are numerous highly effective compensation 
methods for reducing the thermal error of machine tools under 
variable working and ambient conditions. Most of them are, 
however, still limited in their prediction accuracy when several 
more complex scenarios overlap. Correlative models, e.g., 
usually have trouble extrapolating beyond the trained thermal 
load cases. Phenomenological models have difficulties when 
internal heat sources / sinks with changing loads overlap with 
changing ambient conditions. Methods such as TALC can then 
use measurements to recalibrate the model, but this is still 
limited and it interrupts the production process. Simulation 
based methods require a great effort to correctly parametrize 
them and many heat transfer and convection parameters can 
only be estimated roughly, which limits the overall accuracy of 
these models. Using IDS is a very robust method but not all 
machine assemblies allow for their usage. Aside from these 
general considerations, there are many different types of 
machine tools in terms of heat sources and sinks, kinematics, 
operating conditions, etc. which make some compensation 
strategies more effective than others.  

There is thus not yet a catch-all solution for thermal error 
compensation. The GeoComp project attemps to fill some of 
these gaps by combining several of the above-mentioned 
methods and reducing the complexity of the task by evaluating 
the thermal error at the assembly level. GeoComp and its goals 
are described briefly in chapter 2. This chapter also contains 
some information on the machine tool DMU 80 evo, which is 
used in the subsequent sections. One major part of the 
GeoComp approach requires the separation of error 
components along the kinematic chain. Chapter 3 determines 
the elements of this kinematic chain for the DMU 80 evo and 
describes the simulations used here. One important assembly on 
this machine in terms of thermal behaviour is the Z-slide. 
Therefore, chapter 4 presents a compensation model for the Z-
slide based on regression analysis. Finally, chapter 5 gives a brief 
summary and an outlook on future work within GeoComp. 

2. Project GeoComp

The project GeoComp – “Compensation of geometrical errors 
of kinematic chains caused by thermal deformations” consists of 
two ideas: 

1) a thermo-physical model that describes the transformation 
from power consumption via heat transfer in the machine tool 
kinematic and imposes temperature changes causing lateral and 
angular geometrical errors. A reduced thermal model of the 
machine tool for a real-time application and HMI interface. 

2) a self-learning methodology that recalibrates the described 
links between measured model inputs, temperatures and power 
consumption, as well as geometrical errors 

A new compensation method of thermally-induced TCP errors 
will be developed and implemented in the closed-loop CNC 
position control. This can be done by an optional CNC software 
or an additional edged device. The solution will be validated on 
a demonstration machine tool for parameter optimization. 
External measurements will assess the geometrical error 
compensation between TCP and workpiece. The expected 
outcome is a CNC software or an edge device, applicable to 
different machine tools and resulting in a significantly increased 
machine tool and workpiece accuracy over its lifetime.  

GeoComp separates the thermal error along the kinematic 
chain into individual error components for the major assemblies 
in order to make the error prediction of each assembly much 
simpler and more targeted than the entire machine tool would 
allow. In a hybrid approach, each assembly receives the most 
suitable error model from the four compensation types 
mentioned in section one. 

The demonstration machines in the project are the DMG Mori 
DMU 80 evo, the KrauseCo-Mauser FLEX-Module and the Mori 
Seiki NMV 5000 DCG. 

2.1. Demonstration machine DMU 80 evo  

For this initial investigation, the DMU 80 evo was chosen since 
it has demonstrated a very complex thermal behaviour in 
previous studies [9]. For the DMU 80 evo, there is already a 
parametrized and validated FEM simulation model which agrees 
well with measurements [10]. Figure 1 shows the simplified CAD 
model used for the simulations in Ansys Mechanical. The 
housing was omitted here. 

Figure 1. CAD model of the DMU 80 evo without housing 

For the DMU 80 evo, several different compensation 
approaches have been tested and despite some promising 
partial results, none of the individual compensation methods 
was fully successful. Correlative approaches require an 
extended, more suitable temperature sensor placement. 
Phenomenological models have trouble with the interaction of 
internal heat sources, cooling system and ambient effects. 
Finally, simulation based approaches have difficulties with the 
cooling system, the machine table and the complex conditions 
within the workspace during machining. So far, the best solution 
was a hybrid model combining IDS for the machine column and 
a regression based method for the machine table [10]. In 
practice, however, this solution is not so useful, since no IDS are 
actually installed in the DMU 80 evo series.

2.2. Compensation approach for the DMU 80 evo      
The solution pursued in GeoComp is to first break down the 
thermal error into individual components for the main 
assemblies along the kinematic chain. These components are 
machine bed, Y-slide, X-slide, Z-slide and machine table. 
Depending on the direction of error, measurement systems and 
component bending or tilting are also considered and modelled, 
particularly for the machine bed and the Y- and Z-slide. In order 
to obtain these error components, FEM simulations are used. 



The simulations provide training data for correlative and 
phenomenological models. Currently, these simulations are 
performed in Ansys Mechanical but in the future, the training 
data will be generated more efficiently by using model order 
reduced simulations obtained from the MORe software [11].  
Since the error components for the assemblies have a much 
simpler thermo-elastic behaviour, correlative models using the 
temperature sensors are expected to be more successful. Where 
temperature sensors are too sparse, transfer functions are 
employed using motor currents, axis movements or more 
distant temperature sensors as inputs.  
For the machine table, where the simulations are less accurate 
because the existing CAD models lack some relevant details and 
strong, transient heat exchange occurs with the ambient air and 
the cutting fluid, thermal adaptive learning control (TALC) will be 
used and trained using on-machine measurements [4].

3. Kinematic chain of thermal error components

The kinematic chain of the DMU 80 evo for the z-direction of 
the thermal error contains the machine bed, Y-slide, X-slide, Z-
scale, Z-slide and tool. The tool has been ignored here, since it 
needs to be modelled separately and requires both the tool 
specifications and either an additional temperature sensor or 
detailed data on the cutting process. The Z-slide includes the 
spindle drift. The linear measurement system (scale) of the Z-
axis is attached to the X-slide and ensures position-independent 
accuracy for the Z-axis movement. Due to design restrictions in 
the Z-slide, the scale itself does not actually remove much of the 
thermal error in z-direction. Since the scale does not contribute 
to the thermal error, it needs no compensation model.  

Figure 4 shows the kinematic chain in z-direction for three 
simulated load cases. Figure 2 shows the corresponding 
simulated temperature sensor values, whose locations are 
shown in figure 3. The simulated load cases in figures 2 and 4 
were pasted together, they are not one long sequence. 

Figure 2. simulated temperature sensor values of DMU 80 evo column 

Figure 3. temperature sensor locations of DMU 80 evo [9] 

The three load cases are described in table 1. They are each 
preceded by another load case modelling the machine tool 
warmup in standby, which is necessary to create realistic 

thermal starting conditions that can later be reproduced in 
measurements. All sections with axis movements were done 
with the spindle running at max. load. 

Table 1 simulation load cases

Load case

1 Y-axis 
movement

A dry heating by cyclic Y-axis 
motion

G1 Y 75% 
S 100% 

B heating by cyclic Y-axis 
motion with cutting fluid 

G1 Y 75% 
S 100% 

C cool-down in standby - 

2 Z-axis 
movement

A dry heating by cyclic Z-axis 
motion

G1 Z 75% 
S 100% 

B heating by cyclic Z-axis 
motion with cutting fluid 

G1 Z 75% 
S 100% 

C cool-down in standby - 

3 all-axis 
movement

A dry heating by cyclic 
sequential motion of all 5 axes

G1 X 75% 
S 100% 

B heating by cyclic sequential 
5-axis motion with cutting fluid 

G1 X 75% 
S 100% 

C cool-down in standby - 

Figure 4. simulated thermal z-error of relevant column assemblies

4. Usecase: thermal z-error estimation of Z-slide

As figure 4 shows, the z-TCP error of the entire column from 
bed to tool tip is very difficult to map using regression or 
phenomenological model types even though these load cases 
are not yet very complex. Mapping the individual error 
components, especially the dominant Z-slide, however, is much 
more feasible. Using only the two sensors on spindle and Z-axis 
shown in figure 2, a regression based model using a 
characteristic diagram achieved good prediction accuracy with a 
coarse 3x3 grid, see figure 5. A similar model for the entire TCP 
displacement, even with all four column sensors as inputs and a 
finer grid only reached a very rough approximation of the 
simulated curves. 

Figure 5. simulated vs. predicted thermal z-error of the Z-slide

This initial work is meant to demonstrate the feasibility of the 
GeoComp approach. The next steps, which are currently in 
progress, will lead to the complete hybrid compensation model 
and finally its validation using machine tool measurements. 
Once the Ansys simulation model has been ported to the more 
efficient MORe simulation software, a larger set of load cases 
will be computed to obtain as many operating scenarios in the 



training data as possible. With this large training database, the 
optimal compensation models for each of the column 
assemblies will be selected and computed. Then, the TALC 
model for the machine table will be created from measurement 
data. Finally, all compensation models are combined and tested 
jointly. 

5. Summary

Thermal errors present a major hurdle in maintaining 
positioning accuracy in cutting machine tools. Model based 
compensation methods can predict the thermal error and 
reduce it via control-internal offsets. There are numerous such 
compensation models. For complex machine tool designs and 
under realistic working conditions, however, all of these 
methods still have not eliminated the thermal error reliably.  

The GeoComp project attempts to improve the accuracy of 
thermal error predictions by breaking down the error into 
individual assemblies along the kinematic chain and using the 
best suited compensation model for each error component. To 
demonstrate this on the DMU 80 evo, the kinematic chain for 
the z-direction of the column error was set up. Using three 
simulated load cases, the thermal error of this kinematic chain 
was examined and a compensation model for the dominant Z-
slide error component was computed using a characteristic 
diagram. Once the training database has been extended, similar 
compensation models will be created for all assemblies and the 
resulting hybrid model will be tested and evaluated. 
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