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Abstract 
The increasing importance of sustainability in manufacturing has created a trilemma situation between resource efficiency, 
productivity and precision. As the relevance of thermal errors increases with the shift to less cooling-reliant manufacturing 
approaches, compensation models for thermal errors have been proposed as a possible solution to the described trilemma. Since 
those data-driven compensation models are heavily reliant on both data amount and data quality, this paper aims at investigating 
different approaches of preprocessing and potentially augmenting the input data for compensation models. This allows for a higher 
sampling frequency than that of the employed measurement cycle and makes more data points available for training. The employed 
LASSO ARX model can reduce the volumetric error by more than 71 %. The use of data augmentation represents an increase of around 
20 percentage points in volumetric accuracy at a higher sampling rate and a higher efficacy than just adding additional noisy data. 
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1. Introduction   

Thermal errors are one of the largest challenges for 
sustainable and high precision production using machine tools 
(MTs) [1]. Thermal error compensation promises an energy 
efficient solution if the amount of required training data is small 
[2]. For this data driven models allow for an adaptive and self-
learning thermal error compensation [3–5]. Zimmermann et al. 
[6] demonstrated the effectiveness of thermal error 
compensation applied to an impeller workpiece reducing the 
thermal error by up to 73% on the workpiece. Kaftan et al. [7] 
employed two model strategy to compensate fast acting effects 
on thermal errors of working space condition change in Swiss-
type lathes. Abdulshahed  et al. [8] used a thermal imaging 
camera for modelling thermal errors based on grey models. 
Chengyang et al. [9] used infrared images to compensate for the 
thermal expansion of a spindle using deep learning methods. To 
increase the amount of available data they augmented the data 
using flipping and cropping to get 3.5 times as much data as 
measured. Data augmentation for time series is less common 
compared to computer vision approaches, largely due to the 
difficulty of relating features to one another [10].  Oh et al. [11] 
showed that interpolation is a suitable augmentation strategy 
that increases model accuracies by almost 2% over many types 
of different datasets. It is crucial that the continuity of the data 
is ensured [12], which is especially important for thermal errors 
which are a continuous phenomenon with typically pronounced 
hysteresis effects [13].  

One of the key drawbacks of data driven compensation 
methods, its data hunger could be slightly alleviated using data 
augmentation and higher sampling strategies.   

2. Methods      

The proposed compensation model with different data 
augmentation techniques and the experimentally investigated 

MT are described as well as the utilised compensation 
architecture. 
2.1. Data augmentation for thermal compensation models    

Figure 1. Visualization of the different interpolation strategies for 5 
measurement points of a thermal error. 
 

Figure 1 shows the augmentation approaches which were 
investigated for up-sampling the thermal error measurements: 
linear interpolation, cubic spline interpolation. Furthermore, as 
a comparison, the down-sampled temperature data is also 
analysed which can be compared to a zero-order lag model of 
the thermal error. This only measures the temperatures 
whenever there is an error measurement and keeps both values 
constant subsequently. This means that the model is used at a 
significantly lower frequency, reducing the computational cost 
but also introduces a delay from thermal behaviour until the 
compensation can react. 
 
2.2. Experimental setup 
 

To compare the different data augmentation approaches, a 
200-hour experiment was conducted on a DMG Mori NTX2000, 
a multi axis mill-turn machining centre shown in Figure 2. During 
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the experiment, the data of 45 temperature sensors was 
collected every two seconds and sampled to every 30 seconds. 
Furthermore, different load cases with a duration of five minutes 
were performed between each error measurement of the MT 
moving all axes and spindles at random speeds and intervals. 
The measurement cycle requires around 250 seconds. 

The measurement cycle measures a measurement sphere 
placed on the clamping jaw of both turning spindles. The 
position of the sphere is measured using a touch trigger probe. 
And the volumetric error is subsequently determined.  

Figure 2. Kinematics of the NTX2000 with the used touch trigger probe 
and measurement artefacts mounted on the spindle jaws. The 
highlighted axes are the positioning axis of the MT. 

2.3. Model setup 
In order to generate a robust compensation model a Lasso 

regression with an time dependent ARX model is carried out. 
This allows the selection of the model parameters and model 
inputs at the same time. Similar models were introduced by 
Zimmermann et al. [5] and Lang et al. [2].   

3. Results      

Figure 3 shows the volumetric error of the spindle 1 with and 
without compensation. The root mean square error (RMSE) of 
the uncompensated thermal error of 81 µm is reduced to 23.6 
µm after compensation which corresponds to a reduction of 
70.9 %. 

 
    Figure 3. Volumetric thermal error of the spindle 1. Linear Sampling 
of the error 
 
Table 1 Reduction of the volumetric RMSE on the validation data 
 

Interpolation Approach Reduction With gaussian noise 

Original sampling 49.4 % 51.1 % 
Linear  70.9 % 71.3 % 
Cubic Spline  71.2 % 71.5 % 

 

Table 1 shows the different reductions of the RMSE of the 
volumetric error due to the same compensation model. It can be 
observed that the original sampling performs the worst as the 
lowest number of data points are available. Increasing the 

number of data points, which increases the sampling frequency 
by a factor ~18 significantly increases the compensation 
performance. Increasing the available data by adding a gaussian 
noise of 0.025°C and duplicating the data tenfold slightly 
increases performance as well but not to the same efficacy as 
higher temperature sampling. 

4. Conclusion and Outlook      

Data driven thermal error compensation can be a sustainable 
and effective approach for increasing the accuracy of MTs. The 
utilised ARX model achieves reduction of the volumetric error 
from 81 µm to 23.6 µm and sees significant improvement from 
the use of data augmentation to increase the sampling time. 

Further work could reduce the amount of required 
measurements even further by utilizing simulations for 
pretraining compensation models or decreasing the required 
measurement time of the kinematic calibration cycle.  
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