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Abstract 
This paper introduces a method to compensate for thermal errors in machine tools (MT) using LSTM neural networks, with a focus 
on addressing prediction uncertainties. It presents the application of Monte Carlo Dropout (MC-Dropout) to estimate the uncertainty 
of LSTM predictions using data generated in a simulated MT environment. MC-Dropout offers a practical, computationally efficient 
method to allow for effective thermal error compensation without repeated on-machine measurements.  Incorporating uncertainty 
estimates can enhance decision-making, thus allowing more autonomous machine operations and improve the selection of training 
data for machine learning models, leading to greater overall prediction accuracy. 
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1. Introduction   

Thermal errors in machine tools (MTs) can be compensated by 
measuring the temperature in and around the MT and using a 
properly trained machine learning model to predict 
temperature-induced tool centre point deviations. As the 
hysteresis of the thermal state is of high importance, such a 
compensation model should be able to consider the history in 
time series data. A model often used in this regard is the Long-
Short-Term-Memory (LSTM) neural network [1, 2].  
However, training data is often very limited and usually lacks 
coverage of large parts of the possible input space, which 
prevents the long-term robustness of compensation models. 
Using input data dissimilar to the training data can lead to 
inaccurate predictions despite high validation and test accuracy. 
Considering a running compensation on a MT, it is very 
inconvenient to check - through on-machine measurements - 
whether the predictions of the model are still accurate enough 
[3].  
A possible way to estimate accuracy without direct monitoring 
is to check the model’s certainty in predicting with the current 
inputs. However, the usual tools for regression and classification 
do not capture model uncertainty. In comparison, Bayesian 
models offer a mathematically grounded framework to reason 
about model uncertainty, but usually come with a prohibitive 
computational cost [4]. 

In this paper Monte Carlo (MC)-Dropout is used to cost-
effectively estimate uncertainty in neural networks 
approximating Bayesian inference sacrificing neither 
computational complexity nor accuracy. 

2. LSTM Modelling 

The procedure is illustrated using an LSTM network optimized 
for the prediction of axis-specific thermal errors from 
temperature measurements around an MT similar to the work 
of Lang et al. [5]. This data is generated using a simulation of a 
DMG Mori NMV 5000 DCG shown in Figure 1. The basis of the 
simulation is implemented by Becerro [6].  
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Figure 1. a) DMG Mori NMV 5000 DCG, a 5-axis MT. b) Simulation of 
the NMV 5000 in the MORe environment. 

 

The optimized architecture of the LSTM is shown in Figure 2. 
The network takes 26 temperature values across 10 consecutive 
time steps – that is ten measurements over 66 minutes – as 
inputs. These are processed through two subsequent LSTM 
layers with 100 nodes, each followed by a dropout layer for 
regularization with dropout rate 0.05.   

 
Figure 2. Architecture of neural network used for the estimation of 

measuring uncertainty. 

 
The network is trained and then validated on 180 000 unique 

datapoints (corresponding pairs of temperature and TCP-
deviations) and leads to a reduction of over 98 % of the 
volumetric error on a test set of 95 000 different datapoints. 
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Figure 3 displays the true and predicted volumetric errors and 
the remaining uncompensated volumetric error.  

 
Figure 3. Compensation Accuracy of the presented LSTM network. Only 
100 of 95’000 tested predictions are visualized for clarity.  

3. Monte Carlo Dropout 

To determine a measure for the uncertainty on dropout-
featuring models, Gal et al. [4] propose the Monte Carlo-
Dropout Method. By applying the dropout regularization 
technique in the inference phase, the prediction of the neural 
network will differ, depending on the influence of the dropped-
out nodes. Through repeating this process times for the same 
input, a gaussian-like distribution emerges for the prediction of 
each output. The standard deviations of that distribution can be 
used to inform the uncertainty of the neural network for each 
output. This method approximates Bayesian inference in deep 
Gaussian processes without the usual computational cost 
involved [4]. 
This procedure is highlighted in Figure 4. 

 
Figure 4. Illustration of Monte Carlo Dropout in neural networks to 
estimate uncertainty.  

 
The framework used for computation of neural networks 
(TensorFlow) already features optimized inference using 
dropout layers, such that a single forward pass takes less than a 
second depending on model depth and hardware used.  
The dropout rate used can be different from the one used during 
training of the model. Given a high enough number of 
inferences, it only scales the absolute standard deviation but not 
the relative standard deviation of the respective predictions. 

4. Applied MC-Dropout 

The uncertainty of the trained LSTM model is analysed using 
MC-Dropout over one hundred inferences with a dropout rate 
of 0.2 for each node of each of the two dropout layers in the 
presented LSTM network.  

Figure 5 shows the spread of predictions of the different 
iterations via the boundaries of the minimum and maximum 
value (hatched area), the range of the standard deviation and 
the mean of all predictions for each input (dotted). This can be 
compared against the prediction without dropout (dashed) and 
the true value (solid).  

 
Figure 5. Displays the prediction of each axis-specific error including 

the uncertainty estimate resulting from MC-Dropout. Only an excerpt of 
the inferred inputs is visualized for clarity.  

5. Conclusion and Outlook 

Areas where the network shows high uncertainty or where the 
mean prediction is far off the original can be of special interest 
for further analysis or inform how to react to network 
prediction. In uncertain predictions, compensation can be 
paused, and parts can be labelled for post-treatment.  

The main benefit of measuring model uncertainty is the ability 
to estimate prediction accuracy without the need for labelled 
data. As such it could be used to trigger a model 
update/retraining on a machine which is thermally 
compensated via a neural network, without requiring regular 
measurements to determine the model accuracy (TALC) [8].  

Uncertainty can further be used to determine areas or 
sequences for which the network fails to predict with 
certainty/accuracy, which in turn is useful to inform which 
training data to create or label to increase model robustness and 
accuracy or to reduce the amount of training data required to 
achieve accurate predictions.  
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