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Abstract 
The trend toward intelligence in the spindle of high-end CNC machining centers has put forward new requirements for the real-time 
sensing capability of the spindle's various states. However, the characteristics of compact structure, large heat generation, and 
complex thermal mechanisms, making it difficult to directly measure and estimate the temperature of internal regions of a spindle. 
To address this issue, a real-time temperature estimation method is proposed based on the fusion of mechanism and data. Firstly, a 
real-time thermal characteristic modeling method is presented based on thermal network. Then, a two-step model parameter 
optimization approach is proposed by combining the temperature field simulation data and the measured temperature from multiple 

operating conditions. Finally, the proposed data and mechanism fusion modeling approach is applied to two different kind of spindles.

The root mean square errors (RMSE) of the predicted temperature after implementation for the two different spindles, a motorized 
spindle and an external-driven spindle, are 0.6443°C and 0.5457°C, respectively. For the unmeasurable rotating shaft area, the 
average prediction error is 2.96°C. Involving the model predicted temperature in the establishment of a thermal error model can 
improve the prediction accuracy, with the maximum residual decreasing from 9.30 μm to 6.87 μm. All the results demonstrate the 
accuracy, universality and practicality of the proposed approach. 

Machine tool spindle; Transient temperature field; Real-time prediction; Thermal network model; Genetic algorithm  

1. Introduction

Spindle is a key component of high-end CNC machining 
centers, but the characteristics of compact structure, large heat 
generation, and complex thermal mechanisms cause serious 
thermal issues [1-3]. Research on the thermal characteristics of 
motorized spindles is extremely important for the optimization 
of the thermal structure [4], the compensation of thermal errors 
[5], the development of the temperature control scheme [6], and 
the improvement of the thermal stiffness [7], etc. After the 
concept of intelligent spindles [8] was proposed, intelligent 
diagnosis [9] and digital twins [10] for spindles have become 
popular research topics in recent years. The development of 
spindle intelligence has placed new demands on real-time 
temperature monitoring of the entire spindle [11]. Especially in 
intelligent unmanned production lines, the ability to accurately 
predict the entire temperature field of a motorized spindle in 
real time is essential to monitor the running state of the spindle. 
The predicted real-time temperature distributions also have 
great potential in areas such as thermal error compensation and 
intelligent cooling strategy.  

In the field of spindle temperature field modeling, most of the 
modeling methods are based on the heat transfer mechanism, 
including the most popular FE method [12], the finite difference 
method [13], the thermal network model [14], the bond graph 
method [15], etc. However, the instantaneous temperature 
distribution inside the spindle, especially on that of the rotating 
components, is still difficult to obtain rapidly. To meet the new 
challenges in terms of thermal issues of intelligent spindles, it is 
necessary to establish a thermal characteristic model that can 
predict the complete temperature field of a spindle in real time.  

The rest of the manuscript are organized as follow: Section 2 
describes the proposed data and mechanism fusion modeling 
approach. In section 3, the approach is applied to a motorized 
spindle and the accuracy of the undetectable region is indirectly 
verified. In section 4, the approach is conducted to an external-
driven spindle and applied to improve the accuracy of thermal 
error modeling. Section 5 concludes the achievements. 

2. Data and mechanism fusion modeling approach 

To achieve a real-time estimation of the temperature field in 
the undetectable region of motorized spindles, a data and 
mechanism fusion modeling approach is adopted. The thermal 
network with real-time temperature simulation capability is 
selected as the basis for the mechanistic model. A novel dual 
source data parameter optimization method is also proposed by 
combining the temperature field simulation data and the 
measured temperature from different working conditions. 

2.1. Real-time thermal characteristic modeling method based 
on thermal network  

The thermal network method divides a heat transfer system 
into multiple thermal capacitances, which are connected via 
thermal resistance, and ultimately transforms the entire heat 
transfer system into a network of thermal capacitances and 
thermal resistances. The external input sources of the heat 
transfer system are divided into temperature sources and power 
sources. Figure 1 shows a demonstration of a single thermal 
capacitance in the thermal resistance network. 

A time-varying state-space expression describing the thermal 
network of the spindle can be obtained by combining the 
temperature differential equations of all thermal capacitances.  



Figure 1. Demonstration of a single thermal capacitance in the thermal 
resistance network 

2.2. Data-driven approach for parameter estimation of the 
thermal characteristic model 

In order to determine the parameters of the thermal 
characteristic model, a novel data-driven approach is proposed, 
and the process is shown in Figure 2. 
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Figure 2. Flow chart of the data-driven approach for estimation of model 
parameters

First of all, the parameters are divided into three groups. The 
thermal capacitances can be determined directly and precisely 
based on the structure of the spindle and the specific heat 
capacities of the materials. Thus, the thermal capacitances are 
grouped as constants. 

Other parameters are divided into static variables and time-
varying functions according to whether they vary with the 
working conditions. The static variables include conduction 
resistances, convective interface areas, and static convective 
heat transfer coefficients. The time-varying functions reflect the 
transient heat-generating power and the forced thermal 
convection of air.  

A two-step parameter optimization based on genetic 
algorithm is proposed. During the first step, static parameters 
are estimated by analyzing transient temperature data from 
finite element simulations that accounts for the internal heat 
transfer relationships of the motorized spindle. The second step 
involves determining the time-varying functions and further 
optimization of static parameters to improve the model 
prediction accuracy under actual working conditions. 

3. Case 1: application to a motorized spindle 

Based on the data and mechanism fusion modeling approach, 
the transient temperature field model of machine tool spindles 
can be established. The first application object is a C01 series 
motorized spindle manufactured by Ningbo SKYNC Five Axis 
Numerical Control Technology Co. The diameter is 155 mm, and 
the maximum speed is 20,000 RPM.  

3.1. Thermal network modeling of the motorized spindle 
According to the heat transfer characteristics of the motorized 

spindle, the spindle thermal network is obtained by analyzing 
and simplifying the heat generation and transfer path inside the 
spindle, as shown in Figure 3.  
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Figure 3. Thermal network of the motorized spindle

The thermal network consists of 28 temperature nodes 
including 25 thermal capacitances inside the spindle and three 
environment temperature sources. The 29 conductive thermal 
resistances seem as static values and the 13 convective thermal 
resistances influenced by the working conditions are considered 
dynamic values. The heat generation powers of the front/rear 
bearings, stator, and rotor of the spindle motor are also 
regarded as dynamic values. The three environmental 
temperatures, including the ambient air, the coolant of front 
bearings, and the coolant of the stator, are measured directly by 
the RTDs. The average of the inlet and outlet temperatures are 
approximated as the coolant temperature in both pipelines. 

3.2. Model parameter determination of the motorized spindle 
The constant values of 25 thermal capacitances are estimated 

based on the volume and material of the actual components. 
The thermal resistances and the heat generation functions 
ought to be determined according to the two-step parameter 
optimization. 

In the first step, all static unknown parameters are identified 
by GA optimization using the transient temperature field result 
of the finite element simulation under the specific boundary 
conditions.  

In the second step, the static parameters are improved and the 
time-varying parameters are determined by GA optimization 
using 3 of the measured temperature sets under 18 different 
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working conditions from the thermal behavior test shown in 
Figure 4.  

Figure 4. Thermal behavior test of the motorized spindle  

3.3. Predicting accuracy verification
The accuracy of the model's temperature prediction for the 

detectable region is verified using the rest 15 thermal behavior 
test set under working conditions that were not involved in 
parameter optimization. Three examples of the transient RMSE 
of the deviations of predicted and measured temperatures for 
are shown in Figure 5. The average RMSE of the 15 verification 
sets is 0.6443°C.  

Figure 5. Comparison of predicted and measured temperatures after the 
second step of model parameter optimization: (a) maximum speed 6000 
RPM; (b) maximum speed 12000 RPM; (c) maximum speed 18000 RPM; 
subscript "p" and subscript "m" correspond to the model prediction and 
sensor measurement results, respectively 

The internal steady-state temperature distribution of the 
rotating shaft is captured using a thermal infrared imager, as 
shown in Figure 6, to indirectly verify the accuracy of the 
estimated undetectable region temperature. The average error 
of the estimated steady-state temperature for the undetectable 
region is 2.96°C and the maximum error is 8.65°C. 

The results show that the real-time temperature field 
distribution of motorized spindles can be rapidly, accurately, and 
completely inferred based on the proposed method using the 
rotational speed and a few temperature sensors. 

Figure 6. Temperature distribution measurement of the rotating shaft 

4. Case 2: application to an external-driven spindle

Case 2 takes the external-driven spindle of VMC850E vertical 
machining center as the object of study. The thermal effects of 
the spindle headstock and the external drive motor are also 
considered in the modeling process. 

4.1. Thermal network modeling of the external-driven spindle 
Based on the simplified structure of the spindle, the 

mechanism of heat transfer and production is analyzed. The 
heat generated from bearing friction is the main heat source of 
the spindle. The spindle motor is located at the top of the spindle 
headstock. In addition, there is convective heat transfer in the 
area where the spindle comes in contact with the air, where 
forced convection occurs in the rotating parts and natural 
convection occurs in the stationary parts.  

The main components of the spindle are further simplified into 
a thermal network consisting of 20 heat capacities, 21 internal 
static thermal resistances, 6 internal dynamic thermal 
resistances, 8 natural convection resistances, 4 forced 
convection resistances, three power heat sources including the 
front bearings, the rear bearings, the spindle motor, and an 
ambient temperature source, which is shown in Figure 7.  

Figure 7. Thermal network of the external-driven spindle 

4.2. Model parameter determination of the motorized spindle 
The parameters in the thermal network model are optimized 

through dual-source data-driven parameter optimization. 
In the first step, finite element transient temperature 

simulation is performed on the spindle, and the temperature 
changes of the finite element simulation results corresponding 
to the nodes of the thermal network model are exported. 
Genetic algorithm is used for initial optimization of the static 
parameters of the thermal network model. 

In the second step, a thermal characteristic testing experiment 
on the spindle is carried out as shown in Figure 8. A set of 
working conditions measured in the thermal characteristic 
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testing experiment is selected as the modeling data in the 
second step optimization. Based on the genetic algorithm 
toolbox, the time-varying functions of the thermal network 
model are determined and the static parameters are further 
optimized. 

Another set of working conditions measured in the thermal 
characteristic testing experiment is taken as the validation data. 
The RMSE between the predicted temperature results of the 
thermal network model after two-step optimization and the 
measured temperature is 0.5457°C. 

Figure 8. Thermal behavior testing of the external-driven spindle 

4.3. Thermal error model based on the predicted temperatures 
Based on the predicted temperature results of the thermal 

network, a main spindle thermal error prediction model is 
established through LSTM neural network machine learning. The 
predicted results are compared with the traditional method of 
directly modeling using temperature sensors as shown in Figure 
9. 

Figure 9. Comparison between predicted thermal error and the 
traditional method: subscript "p" means model prediction results, 
subscript "m" is measurement results, and subscript "t" correspond to 
traditional methods 

The thermal error model established based on the predicted 
temperature results of the thermal network has higher 
prediction accuracy compared to traditional methods. The 
maximum residual in the Z direction decreased from 9.30 μm to 
6.87 μm, the maximum residual in the Y direction decreased 
from 9.03 μm to 5.67 μm, and the maximum residual in the X 
direction decreased from 3.16 μm to 2.28 μm. 

5. Conclusion

In order to establish a thermal characteristic model that can 
predict the complete temperature field of a spindle in real time, 

a data and mechanism fusion modeling approach is adopted by 
combining the mechanistic thermal network modeling with a 
novel dual source data parameter optimization method. The 
approach is applied to the modelling of a motorized spindle and 
an external-driven spindle, and the conclusions are drawn: 

1) This approach makes up for the existence of undetectable 
regions in temperature sensors. 

2) The models are of high prediction accuracy, with the RMSE 
of 0.6443°C and 0.5457°C for the motorized spindle and the 
external-driven spindle, respectively. 

3) The models can predicted the transient whole temperature 
distribution in real time and meets the new requirement of 
intelligent spindles. 

4) The accuracy of thermal error model based on involving the 
model predicted temperature is better than traditional sensor-
based methods, with the maximum residual decreasing from 
9.30 μm to 6.87 μm. 
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