

Investigation on a NURBS based approach to modelling and analysis of freeform surfaces with the application to design and ultraprecision machining of vari-focal lenses

Shangkuan Liu and Kai Cheng

Department of Mechanical and Aerospace Engineering, Brunel University London Uxbridge UB8 3PH, UK Emails:

<u>shangkuan.liu@brunel.ac.uk</u> <u>kai.cheng@brunel.ac.uk</u>

Presentation Outline

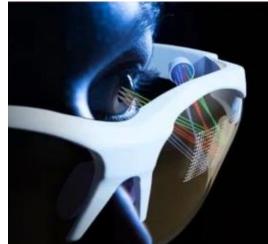
- Research background
- NURBS based approach to freeform surface modelling and construction
- Integrated digital assessment and its implementation
- Ultraprecision machining trials
- Concluding remarks

Research background

- Freeform surfaced devices and applications

Medical and Ophthalmics

- Assistive Technologies
- Ophthalmic and Microscopy


Mobile Displays

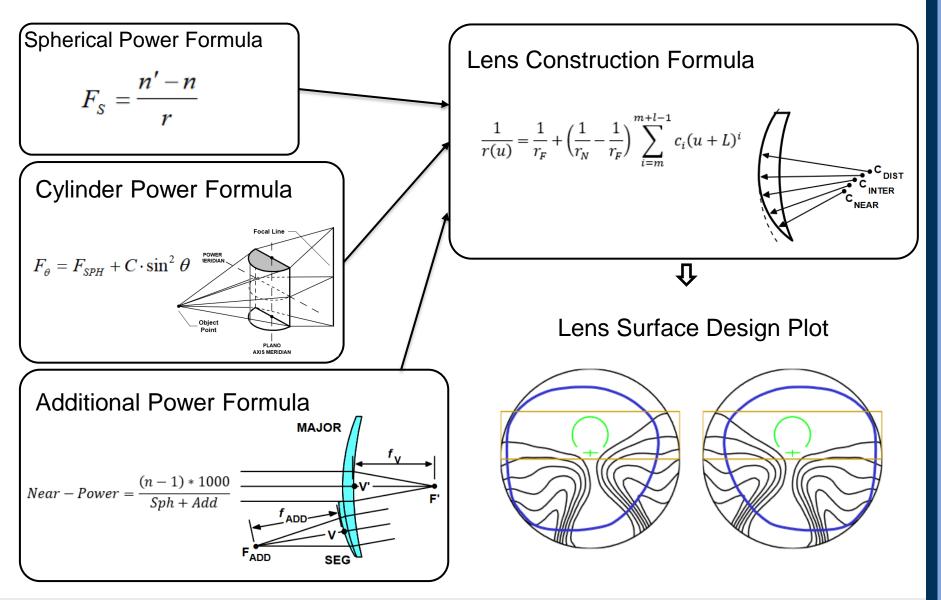
- Near-eye
- Head-worn
- Smart glass

Transportation

 Heads-up displays (HUDs)

NURBS based approach to freeform surface design and 3D model construction/manufacturing

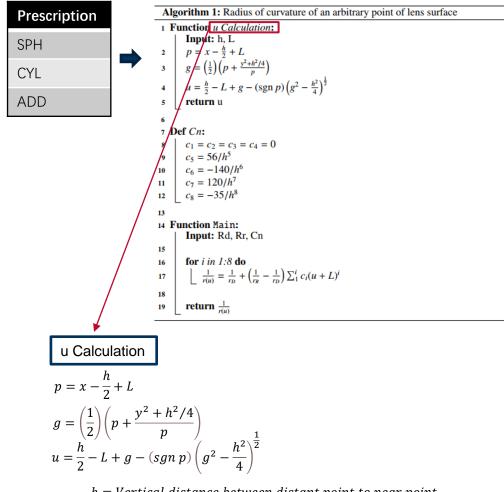
Freeform surface modelling and analysis


Freeform surfaced component and 3D model construction Quality assurance - Form accuracy - 3D surface parameters - Functionality

Ultraprecision machining

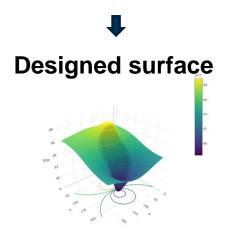
NURBS based integration approach and its implementation perspectives

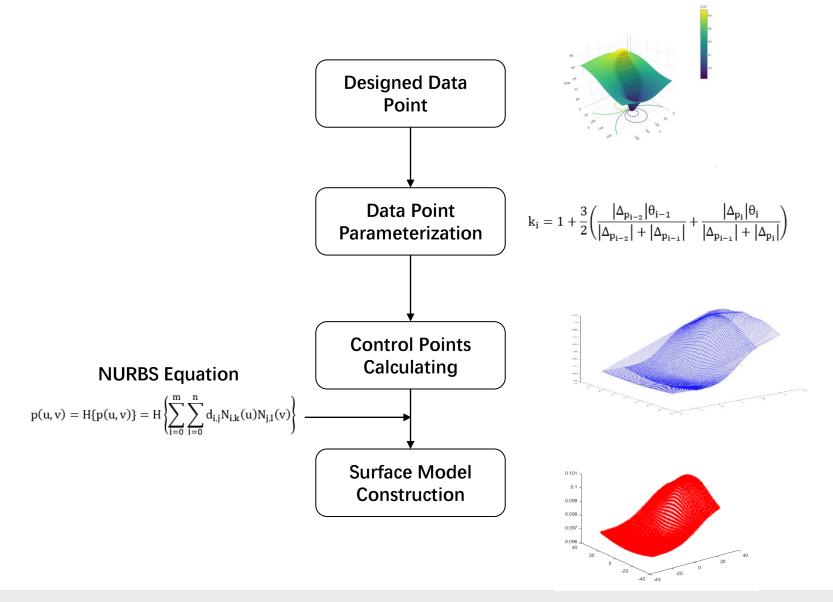
- To develop the NURBS based integrated approach for design and modelling of freeform surfaced components and devices.
- To design the engineering-feasible quality assessment strategy for freeform surfaces in the aspects of both functional and surface topography.
- To investigate ultraprecision machining of freeform surface and the underly issues in processes and the process chain.


Vari-focal lens surface modelling/construction

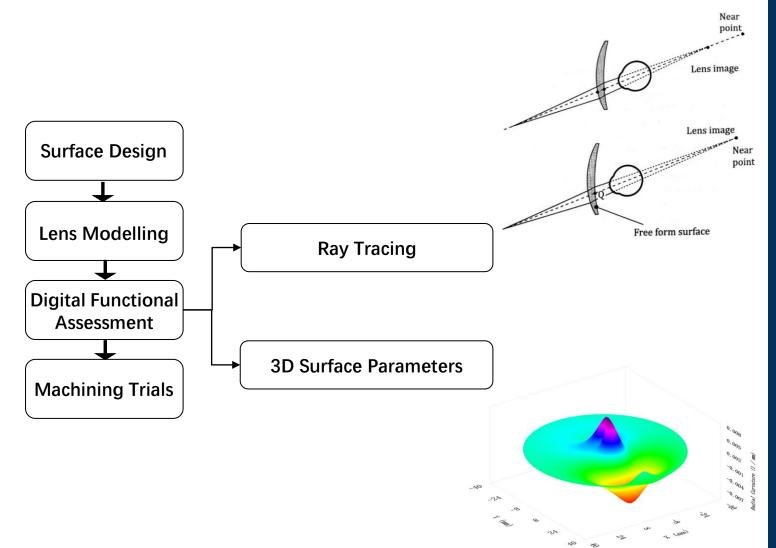
Advance algorithm for lens surface design

Prescription

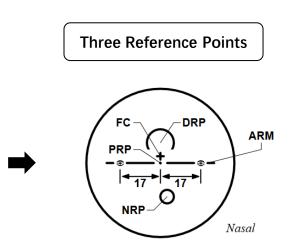

Algorithm for surface design


h = Vertical distance between distant point to near pointL = Vertical distance between distant point to prism point

Data point


-40.000 -40.000 18.703617223142 -40.000 -39.750 18.557064263439 -40.000 -39.500 18.412118478382 -40.000 -39.250 18.268965825744 -40.000 -39.000 18.127790027962 -40.000 -38.750 17.988773092621 -40.000 -38.500 17.852093057227 -40.000 -38.250 17.717916161267 -40.000 -38.000 17.586189147990 -40.000 -37.750 17.456610238039 -40.000 -37.500 17.328870145372 -40.000 -37.250 17.202666579247 -40.000 -37.000 17.077738427256 -40.000 -36.750 16.954044096976

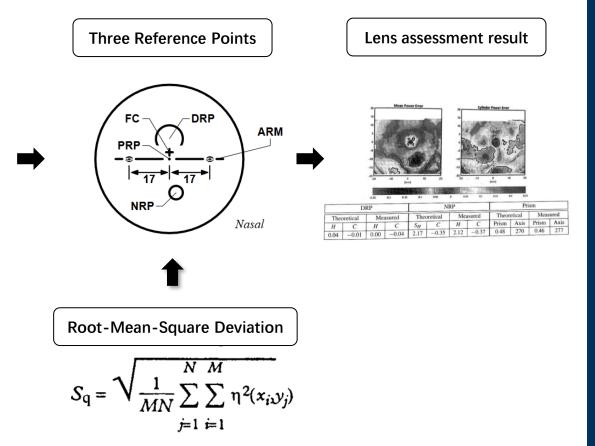
Digital model construction and digital/virtual lens



Integrated digital assessment and implementation

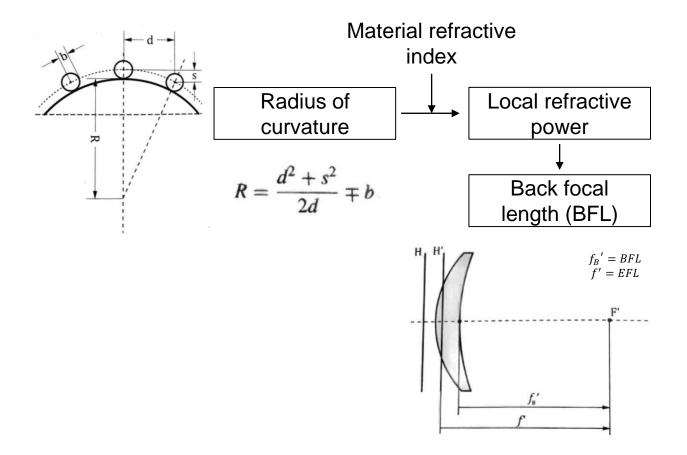
- ISO Standard combining with RMS value

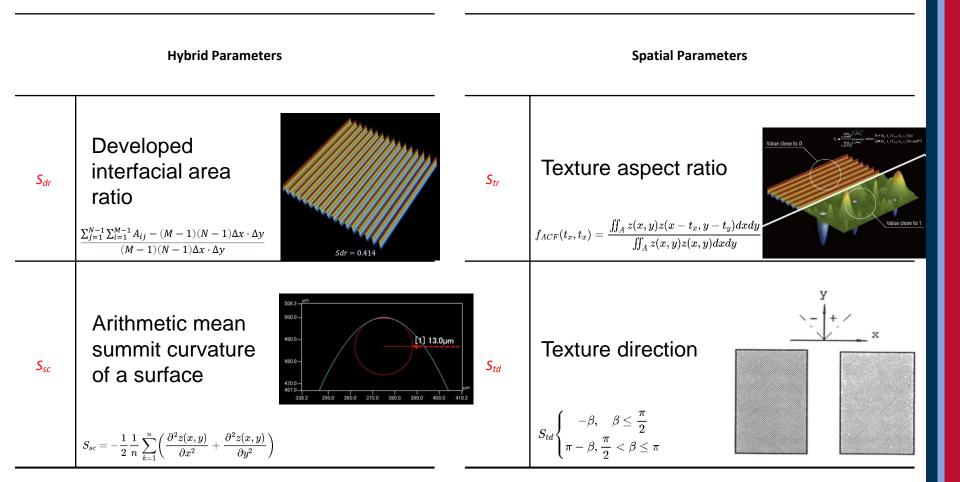
	Table 1 — Tolera	nces on the fo	cal power	of lense		alues in diopt				
Burney of a darked	Tolerance on the	To	Tolerance on the absolute cylindrical power							
Power of principal meridian with higher absolute focal power	focal power of eac principal meridian A		B ≥ 0,00 and ≤ 0,75 and ≤ 4,00		> 4,00 and ≼ 6,00	> 6,00				
$\geqslant 0,00 \text{ and} \leqslant 3,00$	± 0,12	± 0,09	1	0,12	± 0,18	-				
$>3,00$ and $\leqslant6,00$	± 0,12	± 0,12	3	0,12	± 0,18	± 0,25				
$>6,00$ and $\leqslant9,00$	± 0,12	± 0,12	1	0,18	± 0,18	± 0,25				
$>$ 9,00 and \leqslant 12,00	± 0,18	± 0,12	1	0,18	± 0,25	± 0,25				
$>$ 12,00 and \leqslant 20,00	± 0,25	± 0,18	1	0,25	± 0,25	± 0,25				
> 20,00	± 0,37	± 0,25	1	0,25	± 0,37	± 0,37				
Tab	ole 2 — Toleran	es on the dir	ection of	cylinder	axis					
Absolute cylindrical pov D	<pre>ver < 0,50</pre>) > 0,50 a	$nd \leqslant 0,75$	> 0,75 ar	nd ≼ 1,50	> 1,50				
Tolerance on the axis ± 7			± 5		3	± 2				
	- Tolerances o			multifoc	١	/alues in diop				
Value of the additio	≤ 4,	≤ 4,00			> 4,00					
Tolerance	± 0,	± 0,12			± 0,18					
	Table	4 — Prismatic	tolerance		Values	in prism diop				
	Lenses									
Prismatic power	Single vision		Mult			Vertical				
$\geqslant 0,00 \text{ and } \leqslant 2,00$	$\pm (0,25+0,1 \times S_{me})$	x) ±	$\pm (0,25+0,1 \times S_{max})$			$\pm (0,25+0,05 \times S_{max})$				
> 2,00 and < 10,00	$\pm (0,37+0,1\times S_{ma})$	x) ±	$\pm (0.37 + 0.1 \times S_{max})$			$\pm (0,37+0,05 \times S_{max})$				
			$\pm (0.50 + 0.1 \times S_{max})$			$\pm (0,50 + 0,05 \times S_{max})$				


1 of 3

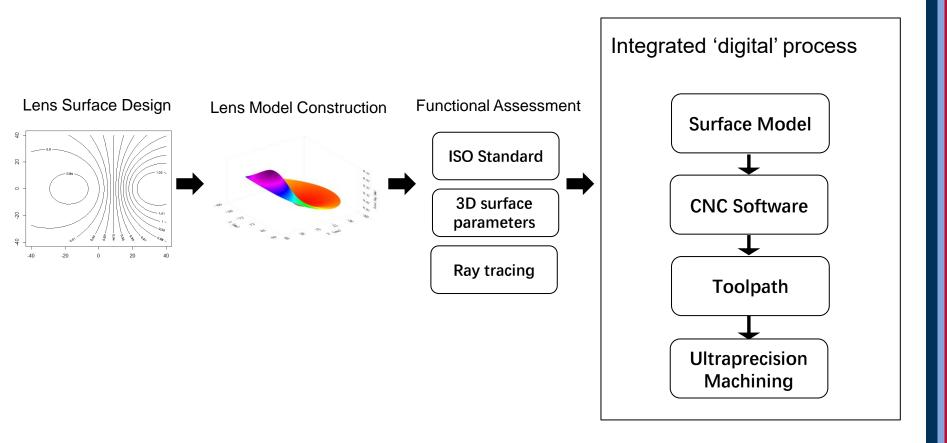
- ISO Standard combining with RMS value

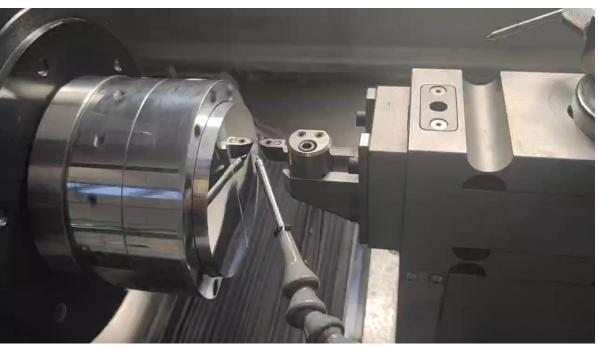
1 of 3


	Table	1 — Toleranc	es on the focal	power	of lenses		Value	es in diop	
Power of principal	Tolerance on the focal power of each principal meridian,		Tolerance on the absolute cylindrical power						
meridian with higher absolute focal power			> 0,00 and $> 0,75$ a < 0,75 $< 4,00$					> 6,0	
$\geqslant 0{,}00$ and $\leqslant 3{,}00$	± 0,12		± 0,09	±	0,12	± 0,18		-	
$>3,00$ and $\leqslant 6,00$	± 0,12		± 0,12	± 0,12		± 0,18		± 0,2	
$>6,00$ and $\leqslant9,00$	± 0,12		± 0,12	± 0,18		± 0,18		± 0,2	
$>$ 9,00 and \leqslant 12,00	± 0,18		± 0,12	±	0,18	± 0,25		± 0,2	
$>$ 12,00 and \leqslant 20,00		± 0,25	± 0,18	±	0,25	± 0,25		± 0,2	
> 20,00	± 0,37		± 0,25	±	0,25	± 0,37		± 0,3	
1	able 2	 Tolerances 	on the directi	on of c	ylinder	axis			
Absolute cylindrical power D		≤ 0,50	$>0,50$ and $\leqslant0,75$ $>0,$		> 0,75 an	,75 and ≼ 1,50		> 1,50	
Tolerance on the axis ± 7		± 7	± 5		±	± 3		± 2	
Table	3 — To	lerances on th	e addition pow	ver for	multifoca	al lenses			
								es in dio	
Value of the addition power			≤ 4,00	2			> 4,00		
Toleran	ce		± 0,12			3	± 0,18		
		Table 4 –	 Prismatic tole 	rance		Val	lues in	prism dio	
			L	enses					
Prismatic power	Single vision			Multi			iocal		
			н	ıl	Vertical				
$\geqslant 0,00 \text{ and } \leqslant 2,00$	±(0,	$25 + 0, 1 \times S_{max}$	±(0,25	(max)	$\pm (0,25+0,05 \times S_{max})$				
$>$ 2,00 and \leqslant 10,00	±(0,	37+0,1×S _{max})	±(0,37	$\pm (0.37 + 0.1 \times S_{ma})$) ±(0,37+0,05×S _{max})		
				$\pm (0.50 + 0.1 \times S_{max})$			±(0,50+0,05×Smax		



- Ray tracing algorithms


2 of 3


- 3D surface parameters

Ultraprecision machining

Ultraprecision machining trials

- Diamond turning machine (UPL250)
- Diamond cutting tools:
 - Tool radius (mm): 0.335
 - Included angle (deg): 60.0°
 - Rake angle (deg): 0°
 - Primary Clearance: 15.0°
- Materials: AI and PMMA
- Process: slow tool servo (STS) mode
- Radial feed(mm/rev): 0.1
- Total cycle time: 9.1 mins

Brunel University London

Concluding remarks

- High precision and personalized design and manufacturing
- Integrated digital lens assessment and quality assurance
- Ultraprecision machining trials evaluation and validation of the NURBS-based integration approach

Thank you!