

Universal Adjustment Platform (UAP)

Standardization of 6 degrees of freedom adjustment systems design and integration

M. Sosin, M. Noir, P. Biedrawa, A. Herty, W. Jasonek, H. Mainaud Durand, V. Rude, K. Widuch

Special Interest Group Meeting: Precision Motion Systems & Control 15th – 16th November 2022

Position adjustment issues

Crowded neighbourhood of aligned components

- Difficult access to regulation mechanisms/screws (circus skills needed for some of components regulation)
- Fragile equipment around workspace slow an careful manipulation

Ergonomics of adjustment

- Mechanisms not always intuitive
 - Simple mechanisms →
 - Big backlash →
 - Multiple measurement and adjustment iterations needed →
- Long adjustment time

Safety of personnel

Radiation (intervention time)

Risks caused by electricical, water networks installations

		LSS5 (one side only)							
		residual dose rate (uSv/h)			10 minutes dose (uSv)				
	distance from IP (cm)	1 week	1 month	4 month	1 year	1 week	1 month	4 month	1 year
D1	7442	800	410	140	55	133	68	23	9
	8450	350	150	50	20	58	25	8	3
TAXN	12626	900	450	150	55	150	75	25	9
	13047	400	220	90	30	67	37	15	5
D2	13779	650	350	130	65	108	58	22	11
	15224	15	10	5	5	3	2	1	1
Q4	17230	55	25	10	5	9	4	2	1
	18262	10	5	5	5	2	1	1	1
Q5	20115	125	65	25	10	21	11	4	2
	21027	20	10	5	5	3	2	1	1
Q6	22472	50	30	10	5	8	5	2	1
	23265	10	5	5	5	2	1	1	1
TCL4	13511	2500	1550	700	250	417	258	117	42
TCL5	19705	800	500	215	70	133	83	36	12
TCL6	22062	510	310	140	50	85	52	23	8
						1199	682	280	106
						2 hours (µSv)			
aisle	_	50	25	10	5	100	50	20	10

Colle	ctive Dos	e (uSv)	1299	732	300	116	

C.Adorisio - WP15 Meeting 24.03.2017

A bit of history - DBQ Platform for CLIC Project

Requirements

- Adjustment knobs from one (access) side
- 5 DOF adjustment possibility (Y & Z translations and 3 rotations)
- Load 170 kg
- Stroke: ± 1 mm in Y and Z (X blocked) ± 4 mrad in all rotations
- Resolution < 5 µm

A bit of history - DBQ Platform for CLIC Project

Kinematics

Isostatic support configuration – modified Stewart platform

- Adjustment knobs located on one side of platform (access)
- Intuitive platform adjustment

A bit of history - DBQ Platform for CLIC Project

motorized or plug-in module version

Universal Adjustment Platform (UAP)

PERSONNEL SAFETY

(LIMITED INTERVENTION TIME IN RADIOACIVE ZONES)

STANDARDIZATION AND COST OPTIMIZATION

Universal Adjustment Platform

Standardized equipment

- Vertical adjustment jig
- Radial adjustment jig
- Joints

UAP – operation scenarios

Universal adjustment platform – manual operation concept

Universal adjustment solution - permanent motors version concept.

Platform equipped with WPS sensors

Universal adjustment solution – concept of use plug-in motors:

- a) Platform measurement from distance using a laser tracker;
- b) Installation of plug-in motors in less than one minute;
- c) Remote adjustment from distance.

UAP as a design framework – *Design Guidelines*

Use of standardized components ("LEGO" blocks approach) and design guidelines

- We can design dedicated platform for various dimesnions of components
- The "Guidelines" kinematics scheme shall be kept

Step 1: Adapt platform dimensions to supported component dimensions

Step 2: Arrange jigs pattern within Bottom plate volume (top); Step 3: Adjust thickness of the plate and position of radial iias (bottom)

Step 4: Prepare the space for the UAP functional sub-components

Step 5: Prepare the Top plate initial model and adjust the joints length

Step 6: Prepare the Top plate initial model and adjust the joints length

Step 7: Integrate all user specific features and vertical jig assembly plates

UAP study and prototype tests: Small UAP

Two sizes of UAP chosen

- SMALL UAP for smaller components with max.
 weight of 300 kg
- <u>BIG UAP</u> for bigger components, max. weight < 2t
- Each platform will need different family of joints/adjustment jigs

- Nominal stroke of the jigs: ±10 mm (max. ±15 mm),
- Platform adjustment accuracy < +/- 20 µm (2 iterations)
- Stability of platform after random lateral load: +/- 30 μm
- Ergonomics ~15 minutes for manual adjustment time (including measurements and calculations)

UAP study and prototype tests: Big UAP

- With typical misalignment 1 iteration
- With misalignment bigger than ±2mm 2 iterations
- 1 iteration = 9min measurement + calculation + adjustment + measurement
- Adjustment time less than 3min

- Allowable load: 2000 kg
- Nominal stroke of the movable piston: ±10 mm (maximum ±15 mm),

Standardized vertical jigs

- Axial piston backlash < 5 μm,
- Radial piston backlash < 20 μm,
- Nominal load of the jig: Big UAP > 15 kN; Small UAP > 2.5 kN
- Compact dimensions; Easiness of integration

Standardized radial jigs

Parameters:

- Axial piston backlash < 5 μm,
- Radial piston backlash < 20 μm,
- Nominal load of the jig: Big UAP > 2 kN; Small UAP > 1 kN
- Compact dimensions; Easiness of integration

Standardized joints

Parameters:

- Nominal longitudinal load of spherical joint link > 12 kN,
- With "zero backlash joints", the total backlash (in all directions)
 of TOP PLATE interface vs. jig piston interface <20 μm,

UAP implementation flexibility

Collimator support (non motorized / motorized)

Summary

- The Universal Adjustment Platform tests showed, that homogenization of adjustment solutions for accelerator components is feasible and can be applied with success to different types of components
- Tests performed on the prototypes of the Big and Small UAP demonstrated a very good performance of the platforms prepared according to the UAP *Design Guidelines*

