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Abstract 

In the high-tech mechatronics equipment business, there is an everlasting ambition to achieve higher 

machine throughputs and accuracies without increasing hardware costs. This requires the optimization 

of all elements of the motion control systems used in these machines: 1) algorithms that generate 

reference trajectories for the motion systems, 2) feedforward and feedback motion control algorithms, 

and 3) hardware and software implementations of these algorithms. In this contribution, the focus is 

only on optimisation of the reference trajectories that we also refer to as the reference motion profiles.  

 

In particular, the optimisation of 15-segments reference trajectories, as depicted in Figure 1, is 

considered. The equations to compute position 𝑝(𝑡), speed 𝑣(𝑡), acceleration 𝑎(𝑡), jerk 𝑗(𝑡) and snap 

𝑠(𝑡) profiles of this trajectory, where 𝑡 denotes time, can be found in [1, p 110]. Each segment {1, … ,15} 

of such a trajectory is described by a specific polynomial function of time. Since the highest order of 

the polynomial function for 𝑝(𝑡) is 4, such a reference trajectory is also known as “the 4th order 

setpoint”. In this contribution, peak values of speed (𝑉), acceleration (𝐴), jerk (𝐽), and snap (𝑆) profiles 

are computed by means of an optimisation algorithm. The optimisation objective is to achieve the 

desired point-to-point movement from the initial position 𝑃0 to the target position 𝑃𝑓 for the specified 

motion time 𝑡𝑓,𝑠𝑝𝑒𝑐, under constraints on actuator, motor drive, and voltage supply capabilities while 

constraining the energy content of the trajectory to minimize the amplification of position errors in the 

frequency range where the position controller is not capable to perform active error suppression. A 

similar optimisation approach can also be applied to motion profiles of lower order, e.g., linear 

trajectory with parabolic blends (a.k.a. “trapezoidal trajectory” [1, p 62], where polynomial functions 

of maximum 2nd-order describe a segment of the position profile) and trajectory with double S velocity 

profile (a.k.a. “the 3rd order setpoint” [1, p 79], where polynomial functions of maximum 3rd-order 

describe a segment of the position profile). 
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Figure 1: A 15-segments motion trajectory: position (initial at 𝑃0, final at 𝑃𝑓), speed (peak value of 𝑉), 

acceleration (peak values of 𝐴), jerk (peak values of 𝐽), and snap (peak values of 𝑆) profiles 

 

In Figure 2, a generic control architecture of a system with 𝑛 motion axes is depicted. The dynamics in 

the figure incorporates the behaviour of mechanics, actuators, motor drives, feedback sensors, 

electronics, as well as the embedded hardware and software for feedback signal processing and 

control.  

 

 

Figure 2: Generic control architecture of a motion system 

 

Despite the degrees of freedom that represent the intended 𝑛 time-dependent motions of the system 

 𝒒 = [𝑝1, … , 𝑝𝑛]𝑇; 𝒒̇ = [𝑣1, … , 𝑣𝑛]𝑇; 𝒒̈ = [𝑎1, … , 𝑎𝑛]𝑇; 𝒒⃛ = [𝑗1, … , 𝑗𝑛]𝑇; 𝒒(4) = [𝑠1, … , 𝑠𝑛]𝑇, (1) 

the system dynamics incorporates other time-varying state coordinates, such as motor currents and 

parasitic motion degrees of freedom caused by flexibilities. Therefore, variable 𝒙 ∈ ℝ𝑚 captures all 

time-varying state coordinates of the motion system, where 𝑚 > 𝑛. For readability, the time-

dependency of 𝒙 is omitted for the remainder of this contribution. Since the dynamics of the motion 

system feature nonlinear phenomena, such as friction, position dependent inertia and kinetic effects 

caused by rotational axes, gravitational forces or torques, motor and motor drive dynamics, etc., a 

state-space representation of these dynamics contains state-dependent function 𝒇(𝒙) ∈ ℝ𝑚 and 

matrix 𝑩(𝒙) ∈ ℝ𝑚×𝑛 that model time-varying and nonlinear dynamical effects; the output function 

𝒈 ∈ ℝ𝑛 may also be nonlinear. Only for some frictionless single-axis motion systems or rigid-body 



systems with sole translational axes, it may hold that 𝒇(𝒙) = 𝑨𝒙, 𝑨 ∈ ℝ𝑚×𝑚. For these specific 

systems, matrices 𝑨 and 𝑩 are constant for any 𝒙. On the other hand, in many cases it holds 𝒈(𝒙) =

𝑪𝒙, 𝑪 ∈ ℝ𝑛×𝑚 with 𝑪 being constant for any 𝒙.  Input 𝒖 ∈ ℝ𝑛 (force or torque) to the system dynamics 

is generated by feedback 𝒖𝑓𝑏 ∈ ℝ𝑛 and feedforward 𝒖𝑓𝑓 ∈ ℝ𝑛 control laws, where 𝒖𝑓𝑏 is the output 

of feedback controller 𝑪𝑓𝑏. Input to 𝑪𝑓𝑏 is the position error 𝒆 = 𝒒𝑟 − 𝒒. The feedforward signal 𝒖𝑓𝑓 

is commonly determined based on 𝒒𝑟(𝑡), 𝒒̇𝑟(𝑡), 𝒒̈𝑟(𝑡), 𝒒⃛𝑟(𝑡),𝒒𝑟
(4)

(𝑡) that represent reference profiles 

for the controlled system motion coordinates 𝒒. These reference profiles are computed by the 15-

segments setpoint generator which implements specific polynomial functions for 𝑝𝑖(𝑡), 𝑣𝑖(𝑡), 𝑎𝑖(𝑡), 

𝑗𝑖(𝑡), and 𝑠𝑖(𝑡), 𝑖 ∈ {1,2, … , 𝑛} at each segment indicated in Figure 1, while accommodating motion 

specifications and constraints denoted in Figure 2 as 𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑠. The specifications and the constraints 

for motion axis 𝑖 are: 

 𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑠 𝑖𝑎𝑥𝑖𝑠 = {𝑃0
𝑖 , 𝑃𝑓

𝑖 , 𝑡𝑓,𝑠𝑝𝑒𝑐
𝑖 , 𝑉𝑙𝑖𝑚

𝑖 , 𝐴𝑙𝑖𝑚
𝑖 , 𝐽𝑙𝑖𝑚

𝑖 , 𝑆𝑙𝑖𝑚
𝑖 , 𝑢𝑙𝑖𝑚

𝑖 , 𝑢𝑟𝑚𝑠,𝑙𝑖𝑚
𝑖 , 

                                    𝐼𝑙𝑖𝑚
𝑖 , 𝐼𝑟𝑚𝑠,𝑙𝑖𝑚

𝑖 , 𝑈𝑙𝑖𝑚
𝑖 , 𝐶𝑃𝑆𝐷𝑎,𝑙𝑖𝑚

𝑖 , 𝑓1, 𝑓2, 𝒑𝑖}, (2) 

where 𝑃0
𝑖  and  𝑃𝑓

𝑖  are the initial and target positions, 𝑡𝑓,𝑠𝑝𝑒𝑐
𝑖  is the specified motion time, 𝑉𝑙𝑖𝑚

𝑖 , 𝐴𝑙𝑖𝑚
𝑖 , 

𝐽𝑙𝑖𝑚
𝑖 , and 𝑆𝑙𝑖𝑚

𝑖  are the limits on 𝑉𝑖, 𝐴𝑖, 𝐽𝑖, and 𝑆𝑖 (denoted in Figure 1 without index 𝑖), respectively, 𝑢𝑙𝑖𝑚
𝑖  

and 𝑢𝑟𝑚𝑠,𝑙𝑖𝑚
𝑖  are the limits on the peak absolute and root-mean-squares (rms) values of system input 

𝑢𝑖 (force or torque), respectively, 𝐼𝑙𝑖𝑚
𝑖  and 𝐼𝑟𝑚𝑠,𝑙𝑖𝑚

𝑖  are the limits on the peak and rms values of the 

motor coil currents, respectively, and 𝑈𝑙𝑖𝑚
𝑖  is the voltage limit of the power supply. Both (DC and AC) 

rotary and linear electrical actuators are considered, including permanent magnet synchronous motors 

(PMSM). In (2), 𝐶𝑃𝑆𝐷𝑎,𝑙𝑖𝑚
𝑖  denotes a limit on the energy content of the reference acceleration profile 

𝑎𝑟(𝑡), which is expressed in terms of the limit on the Cumulative Power Spectrum Density (CPSD) of 

𝑎𝑟(𝑡) [2] in a frequency range 𝑓1 ≤ 𝑓 ≤ 𝑓2, 𝑓 is frequency in [Hz], where the motion controller cannot 

achieve error suppression;  𝒑𝑖 denotes a vector of all mechanical and electrical system parameters for 

axis 𝑖, such as mass, coordinates of center of masses, mass moments of inertia, stiffness, damping and 

friction parameters, motor coil resistance and inductance, back-emf and motor force/torque constants, 

number of motor poles, pole pitches, etc. Settings in (2) are normally specified by a systems engineer 

or mechatronics system architect based on their understandings of motion system’s mechanics, 

electronics, and actuation requirements and limits.  

 

For mathematical formulation of the considered optimisation problem, one should observe the time-

periods of different segments of the 15th-segment trajectory depicted in Figure 1: 𝑇𝑎, 𝑇𝑗 and 𝑇𝑠 are 

periods of non-zero acceleration, jerk and snap, respectively, and 𝑇𝑣 is the period of constant speed. In 



this contribution we only consider 15th-segment trajectories whose position profiles are symmetric 

with respect to mid-point between 𝑃0 and 𝑃𝑓. This consideration implies the same peak values of 

acceleration, jerk, and snap profiles together with equal periods of acceleration and deacceleration. 

Based on relations between 𝑃𝑓 − 𝑃0, 𝑉, 𝐴, 𝐽, and 𝑆 on one side and 𝑇𝑣, 𝑇𝑎, 𝑇𝑗 and 𝑇𝑠, on another, one 

can determine a total duration 𝑡𝑓  of the 15th-segment trajectory [1, p 108]:  

 𝑡𝑓 =
𝑃𝑓−𝑃0

𝑉
+

𝑉

𝐴
+

𝐴

𝐽
+

𝐽

𝑆
. (3) 

The optimisation problem is posed as follows: Given the specified (target) motion time 𝑡𝑓,𝑠𝑝𝑒𝑐, 

determine peak values 𝑉 > 0, 𝐴 > 0, 𝐽 > 0, and 𝑆 > 0 of the 15th-segment trajectory between 

terminal positions 𝑃0 and 𝑃𝑓 such as to minimize the following cost function: 

 𝒥 = min
{𝑉,𝐴,𝐽,𝑆}

|𝑡𝑓 − 𝑡𝑓,𝑠𝑝𝑒𝑐|, (4) 

while satisfying the following constraints: 

 𝐴 ≥
𝐽2

𝑆
,      𝑉 ≥

𝐴2

𝐽
+

𝐴∙𝐽

𝑆
,     and     

𝑉

𝐴
+

𝐴

𝐽
+

𝐽

𝑆
≤

𝑃𝑓−𝑃0

𝑉
; (5) 

 𝑝(0) = 𝑃0,     𝑝(𝑡𝑓) = 𝑃𝑓,     𝑉 ≤ 𝑉𝑙𝑖𝑚,     𝐴 ≤ 𝐴𝑙𝑖𝑚,     𝐽 ≤ 𝐽𝑙𝑖𝑚,     𝑆 ≤ 𝑆𝑙𝑖𝑚; (6) 

 |𝑢(𝑡)| ≤ 𝑢𝑙𝑖𝑚,    𝑟𝑚𝑠(𝑢(𝑡)) ≤ 𝑢𝑟𝑚𝑠,𝑙𝑖𝑚,    |𝑖𝛼(𝑡)| ≤ 𝐼𝑙𝑖𝑚,    𝑟𝑚𝑠(𝑖𝛼(𝑡)) ≤ 𝐼𝑟𝑚𝑠,𝑙𝑖𝑚  

 (𝛼 is motor coil index; e.g. 𝛼 ∈ {𝑎, 𝑏, 𝑐} for 3-phase PMSM),    𝑈(𝑡) ≤ 𝑈𝑙𝑖𝑚; (7) 

 ∫ 𝑃𝑆𝐷𝑎(𝑡)(𝑓)d𝑓
𝑓2

𝑓1
≤ 𝐶𝑃𝑆𝐷𝑎,𝑙𝑖𝑚. (8) 

Constraints (5) represent feasibility conditions on tuning parameter 𝑉, 𝐴, 𝐽, and 𝑆, since their violation 

implies no existence of the 15-segments trajectory [1, p 109]. For instance, the first inequality in (5) 

ensures that the period 𝑇𝑗 of non-zero jerk cannot be shorter than the multiple of two periods 𝑇𝑠 of 

non-zero snap. In (7), 𝑖𝛼(𝑡) denotes a current in coil 𝛼, and 𝑟𝑚𝑠 is a function which computes the root-

mean-squares value of its argument. In (8), 𝑃𝑆𝐷𝑎(𝑡)(𝑓) is a Power Spectrum Density (PSD) function [2] 

of 𝑎𝑟(𝑡), where 𝑓 is frequency and 𝑓1 and 𝑓2 (already appearing in [2]) representing the start and the 

end frequencies, respectively, of a frequency range where the feedback motion controller may amplify 

position error. 

 

Cost function (4) and constraints (5)-(8) represent a multi-objective optimisation problem which is non-

convex and nonlinear with respect to tuning parameters 𝑉, 𝐴, 𝐽, and 𝑆. Constraints in (7) require the 

computation of 𝑢(𝑡)-, 𝑖𝛼(𝑡)-, and 𝑈(𝑡)-profiles that correspond to the 15-segments reference 

trajectory conforming to 𝑉, 𝐴, 𝐽, and 𝑆. Standard frameworks can be used to model multi-body 



dynamics of the motion system and the dynamics of its actuators, drives and power supplies. For 

instance, Lagrange-Euler approach [3] is suitable for modelling the nominal (mostly rigid-body) 

dynamics of the system mechanics, while dynamics of motors, their drives and power supplies can be 

represented by appropriate models from the literature. For example, models of a 3-phase PMSM can 

be found in [4]. Using models of the system mechanics, one can compute 𝑢(𝑡). Models of motor 

dynamics allow for the computation of 𝑖𝛼(𝑡)- and 𝑈(𝑡)-profiles. To solve the nonlinear and nonconvex 

optimisation problem (4) under constraints (6)-(8), an interior-point algorithm [5] is suggested in this 

contribution. 

 

For illustration, the described framework for multi-objective optimisation of the 15-segments 

reference trajectory is applied on the turret axis of VORTEX II die-bonder [6]. This machine is produced 

by company ASMPT, who is the global market leader with comprehensive offering of machines for 

assembly and advanced packaging, offering products to various customers in the fields of 

optoelectronics, electronics, solar energy, automotive and other segments. A photo of the VORTEX II 

die-bonder is shown in Figure 3. 

 

 

Figure 3: VORTEX II: high performance ASMPT LED die-bonder 

 

Dynamics of the turret mechanics can be described by a simple model: 

 𝐽 ∙ 𝑎(𝑡) + 𝑏 ∙ 𝑣(𝑡) + 𝑓𝑐 ∙ sign(𝑣(𝑡)) = 𝑢(𝑡), (9) 

where 𝐽 is mass moment of inertia of the turret, 𝑏 and 𝑓𝑐 are coefficients of viscous and Coulomb 

friction, respectively, and 𝑢 is torque applied to the turret generated by the motor. Parameters 𝐽, 𝑏 

and 𝑓𝑐 are known to ASMPT from CAD data and measurements. Since the turret is actuated by a 3-

phase PMSM, a model of motor dynamics [4] is used to compute currents 𝑖𝛼(𝑡), 𝛼{𝑎, 𝑏, 𝑐}, in the motor 

coils and source voltage profile 𝑈(𝑡): 



 [
𝑖𝑎(𝑡)
𝑖𝑏(𝑡)

] = 𝒉1(𝑢(𝑡), 𝑝(𝑡), 𝑗(𝑡));       𝑖𝑐(𝑡) = −𝑖𝑎(𝑡) − 𝑖𝑏(𝑡), (10) 

 𝑈(𝑡) = ℎ2(𝑣(𝑡), 𝑖𝑎(𝑡), 𝑖𝑏(𝑡), 𝑖𝑐(𝑡)), (11) 

where 𝒉1 ∈ ℝ2 is a nonlinear vector function of motor torque, position and jerk motion profiles, while 

ℎ2 ∈ ℝ is a nonlinear scalar function of speed motion profile and currents in the motor coils. 

Parameters of these models are also available in a data-base of motor characteristics of ASMPT. Models 

(9)-(11) are used to compute 𝑢(𝑡)-,𝑖𝑎(𝑡)-,𝑖𝑏(𝑡)-,𝑖𝑐(𝑡)-,𝑈(𝑡)-profiles that are needed to solve the 

optimization problem (4) under constraints (5)-(8).  

To demonstrate the importance of multi-objective 15-segements reference trajectory optimisation, 

the left-hand side of Figure 4 depicts the four candidate motion profiles for the turret axis of VORTEX 

II in different colours. In this and all consecutive figures, all numerical values are removed for 

confidentiality reasons. One can notice that each profile depicted in Figure 4 has two distinct phases: 

a motion phase of the duration 𝑡𝑓
𝑐𝑖𝑟𝑐 or 𝑡𝑓

15𝑠𝑒𝑔
 (turret rotates from 𝑃0 to 𝑃𝑓) and an idle phase  of the 

duration 𝑡𝑓
𝑖𝑑𝑙𝑒 (turret stands still at 𝑃𝑓). Sum of the durations of the motion and idle phases determines 

the turret cycle run time. A shorter cycle run time is favourable for a higher throughput of the turret, 

which directly determines the throughput of the complete machine. A ratio between the duration of 

the motion phase and the cycle run time defines duty cycle of the turret motor. The highest duty cycle, 

under which motor coils do not overheat, is wishful to maximize the machine throughput. 

 

      

 

 

 

 

 

 

Figure 4: Left-hand side: nominal and unfeasible cycloidal, and the optimised 15-segments reference  

trajectories; right-hand side: sensitivity function characteristics vs. scaled PSD-plots of 𝑎𝑟(𝑡)-profiles 
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By default, cycloidal trajectories [1, p 43] are used as the reference profiles for the turret axis. Examples 

of such trajectories are depicted in Figure 4 with green and dashed black lines. A cycloidal trajectory is 

appealing due to simplicity of its computation, since the same compact equations for 𝑝𝑟(𝑡), 𝑣𝑟(𝑡), 

𝑎𝑟(𝑡), 𝑗𝑟(𝑡), and 𝑠𝑟(𝑡) are executed in the real-time reference trajectory generator at every 𝑡 ∈ [0, 𝑡𝑓]. 

Furthermore, since 𝑎𝑟(𝑡) is a sinusoidal function of 𝑡, energy spectrum of 𝑎𝑟(𝑡) is only concentrated 

around frequency 𝑓𝑐𝑦𝑐𝑙𝑜𝑖𝑑𝑎𝑙 = 1/(2𝜋𝑡𝑓) (in [Hz]), where 𝑡𝑓 is the duration of the motion phase. One 

can directly set 𝑡𝑓 to keep the dominant energy of 𝑎𝑟(𝑡) below resonance frequencies of the turret 

dynamics. In dynamical model (9) the motor torque component which gives the largest contribution to 

the total torque 𝑢𝑟(𝑡) is linearly proportional to 𝑎𝑟(𝑡); therefore, 𝑎𝑟(𝑡) directly defines the energy 

content of 𝑢𝑟(𝑡). That can be used for mitigation of torsional vibrations in the turret mechanics, since 

concentration of dominant energy of the total torque away from the resonance frequencies minimizes 

their excitation in the motion phases of turret operation. 

 

Among all possible cycloidal trajectories, the one depicted with green colour in Figure 4 has the shortest 

motion time 𝑡𝑓
𝑐𝑖𝑟𝑐 for which all constraints (5)-(8) are met, which hereafter, is labelled as ‘cycloidal 

nominal’. It appears that any cycloidal trajectory with a motion time 𝑡𝑓 < 𝑡𝑓
𝑐𝑖𝑟𝑐  cannot meet all of the 

constraints (5)-(8) simultaneously. For motion time 𝑡𝑓
15𝑠𝑒𝑔

 of circular trajectory depicted with dashed 

black lines in Figure 4, 𝑡𝑓
15𝑠𝑒𝑔

< 𝑡𝑓
𝑐𝑖𝑟𝑐 holds, and this trajectory exceeds the peak limit on the 

corresponding 𝑢(𝑡). Therefore, it is labelled as ‘cycloidal unfeasible’. Violation of the peak limit on the 

turret torque can be observed by inspecting  𝑢𝑟(𝑡)-plots shown in Figure 5. On the left-hand side in 

this figure, actuator related signals are plotted together with the corresponding limits indicated by 

horizontal dashed-dotted lines. A motor torque profile which corresponds to the ‘circular unfeasible’ 

trajectory is depicted by the dashed black line. On the right-hand side, peaks of the 𝑢𝑟(𝑡)-profiles are 

enlarged to emphasize the violation of the limit on the actuator torque by the ‘circular unfeasible’ 

trajectory. One should realize that 𝑟𝑚𝑠 values of motor related signals in (7) are influenced by the 

duration of the idle phase of each reference trajectory in Figure 4. For maximisation of the turret duty 

cycle, idle phase of each trajectory is of identical duration 𝑡𝑓
𝑖𝑑𝑙𝑒.  

 



 

Figure 5: Left-hand side: actuator signals (input voltage 𝑈(𝑡), torque 𝑢(𝑡), and phase currents 𝑖𝑎(𝑡), 

𝑖𝑏(𝑡) and 𝑖𝑐(𝑡)); right-hand side: zoom-in reveals that peak 𝑢(𝑡) of ‘unfeasible cycloidal’ exceeds 𝑢𝑙𝑖𝑚 

 

Besides cycloidal reference trajectories, in Figure 4 two 15-segments reference trajectories are also 

depicted: 1) one with low peak acceleration value (𝐴), depicted in blue colour and labelled as ’15-

segments low 𝐴’ and 2) one with low energy in a frequency range where feedback controller may 

amplify position errors, depicted in red colour and labelled as ’15-segments low energy where 

sensitivity function peaks’. Both 15-segments trajectories are computed by solving the optimisation 

problem (4) with constraints (5)-(7). During the computation of ’15-segments low 𝐴’ trajectory, 

condition (8) was not imposed and a value for 𝐴𝑙𝑖𝑚 was set which is lower than the value set during 

the computation of ’15-segments low energy where sensitivity function peaks’. Condition (8) was 

imposed during optimisation of the trajectory depicted in red colour. For both 15-segments 

trajectories, the target motion time was set to 𝑡𝑓,𝑠𝑝𝑒𝑐 = 𝑡𝑓
15𝑠𝑒𝑔

. Other limits on motion profiles that are 

used during the optimisation are indicated in Figure 4 with horizontal dashed-dotted lines. Both 

optimized 15-segment trajectories achieve a target motion time 𝑡𝑓
15𝑠𝑒𝑔

, where 𝑡𝑓
15𝑠𝑒𝑔

< 𝑡𝑓
𝑐𝑖𝑟𝑐 . A 

specific value for 𝑡𝑓
15𝑠𝑒𝑔

 is set to enable the throughput increase of the turret for 7%, without any 

changes in its hardware. Satisfaction of actuator constraints for both 15-segments trajectories can be 

verified by the inspection of signals shown in Figure 5 depicted in blue and red colours. All these signals 

lay within the imposed bounds indicated by horizontal dashed-dotted lines. A shorter motion time of 

the 15-segments reference trajectories is only the first prerequisite towards higher turret throughput. 

The second and the most critical prerequisite is to minimize settling time, meaning that right after the 

end of the motion phase the actual turret position 𝑝(𝑡) should converge to the reference value 𝑃𝑓 as 



quickly as possible. In other words, the position error 𝑒(𝑡) = 𝑃𝑓 − 𝑝(𝑡) has to remain below 𝐸𝑙𝑖𝑚: 

 |𝑒(𝑡)| < 𝐸𝑙𝑖𝑚,   ∀𝑡 ≥ 𝑡𝑓
15𝑠𝑒𝑔

+ 𝑡𝑠𝑒𝑡𝑙, (12) 

where 𝑡𝑠𝑒𝑡𝑙 is a settling time and 𝐸𝑙𝑖𝑚 is an accuracy limit. These values are set by process and 

mechatronics systems architects at ASMPT: 𝑡𝑠𝑒𝑡𝑙 is set to be much shorter in comparison to the motion 

time for maximizing the machine throughout; 𝐸𝑙𝑖𝑚 is set to let VORTEX II machine handle 2 mil  4 mil 

(50m  100m) mini LED components effectively [6]. The key difference between ’15-segments low 

𝐴’ and ’15-segments low energy where sensitivity function peaks’ reference trajectories, is in their 

energy content illustrated by PSD characteristics [2] shown on the right-hand side in Figure 4. These 

PSD plots are overlayed with magnitude characteristics of the sensitivity function [7, p 193] of the turret 

feedback control system depicted in magenta. In the frequency domain, this sensitivity function 

represents a transfer function from z-transform [7, p 60] of the time-sampled reference turret position 

profile 𝑝𝑟  to z-transform of the time-sampled position error 𝑒 = 𝑝𝑟 − 𝑝. Due to well-known ‘waterbed 

effect’ [8], pushing for a higher control bandwidth to increase frequency 𝑓1 (indicated in the sensitivity 

plot on the right-hand side in Figure 4) below which magnitude of the sensitivity function is lower than 

1 for active error suppression increases the magnitude of the sensitivity function above 𝑓1. On the right-

hand side in Figure 4, a frequency range where magnitude of the sensitivity function is prominently 

above 1 is in between frequencies 𝑓1 and 𝑓2. In this frequency range, the feedback controller may 

amplify energy content of position error 𝑒. To limit the energy content of ’15-segments low energy 

where sensitivity function peaks’ reference trajectory, condition (8) is engaged during its optimisation. 

A specific value of 𝐶𝑃𝑆𝐷𝑎,𝑙𝑖𝑚 in (8) was set based on the frequency-domain integral of PSD function of 

‘cycloidal nominal’ 𝑎𝑟(𝑡)-profile in the same frequency range from 𝑓1 to 𝑓2. The specified 𝐶𝑃𝑆𝐷𝑎,𝑙𝑖𝑚 was 

set higher than the calculated value of that integral to enable computation of feasible solution to the 

optimisation problem (4) under constraints (5)-(8). By inspecting the PSD plots overlayed with 

magnitude characteristics of the sensitivity function shown on the right-hand side in Figure 4, one can 

notice that the ’15-segments low energy where sensitivity function peaks’ reference trajectory 

depicted with red line features far less energy in the critical frequency range in between  𝑓1 and 𝑓2 than 

’15-segments low 𝐴’ trajectory depicted with blue line. As a result, ’15-segments low energy where 

sensitivity function peaks’ reference trajectory should cause lower error amplification in the frequency 

range where magnitude of the sensitivity function is prominently above 1 than ’15-segments low 𝐴’. 

Notify that the feasible ‘cycloidal nominal’ reference trajectory has the lowest energy content in 

between  𝑓1 and 𝑓2, since its energy is dominantly concentrated around frequency 1/(2𝜋𝑡𝑓
𝑐𝑖𝑟𝑐) which 

is well below 𝑓1. 

 



Figure 6 depicts the position error plots right after the end of motion phases for ’15-segments low 𝐴’ 

(depicted in blue) and ’15-segments low energy where sensitivity function peaks’ (depicted in red) 

reference trajectories. As such, these errors correspond to the settling and steady-state phases of error 

transients. Vertical magenta dashed line identifies the end of the allowed settling window according to 

formula (12). Error limits after the end of the settling window are indicated by horizontal black dashed 

lines. It is noticeable that ’15-segments low energy where sensitivity function peaks’ meets the desired 

steady-state accuracy within the specified settling time 𝑡𝑠𝑒𝑡𝑙, unlike ’15-segments low 𝐴’. This implies 

that ’15-segments low energy where sensitivity function peaks’ meets the accuracy prerequisite for 

turret throughput increase. Therefore, the turret throughput is increased by minimisation of energy 

content of the 15-segments trajectory in a frequency range where sensitivity function of the feedback 

control system indicates amplification or position errors. The optimisation method (4)-(8) is 

implemented in a proprietary software tool of ASMPT to facilitate and automate computation of 

reference trajectories for many different motion systems present in ASMPT products.  

 

 

 

 

 

 

 

 

 

Figure 6: Setling position errors achieved with two optimised 15-segments reference trajectories 

 

In comparison to other optimisation methods for frequency modification of reference trajectories, such 

as input shaping [1 p 381] and tuning peak values of the 15-segments motion profiles to eliminate the 

energy of the resulting 15-segments trajectory at a finite number of discrete frequencies [9], the multi-

objective optimisation method does not extend the motion time of the frequency shaped trajectory. 

This is one of the most significant advantages of the multi-objective optimisation approach from this 

contribution. Its main challenge is nonlinear and nonconvex relation between tuned parameters (𝑉, 𝐴, 

𝐽, and 𝑆), on one hand, and cost function (4) and constraints (5)-(8), on another. Because of such a 

relation, optimisation results are very sensitive to the applied optimisation method and initial 

conditions due to existence of local optima of the cost function. In future, ASMPT team will explore 

solving problem (4)-(5) using a global optimisation method, such as DIRECT algorithm [10]. The ultimate 
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goal is to perform global and time-efficient optimisation of the reference trajectories to increase the 

throughput and accuracy of ASMPT products without hardware modifications. 

 

References 

[1] Biagiotti L and Melchiorri C 2008 Trajectory Planning for Automatic Machines and Robots (Berlin 

 Heidelberg: Springer-Verlag) 

[2] De Kraker B 2013 A Numerical-Experimental Approach in Structural Dynamics (Maastricht: Shaker 

 Publishing B.V.) p 121 

[3] Spong M W, Hutchinson S and Vidyasagar M 2020 Robot Modeling and Control (Wiley) p 181 

[4] Beauty H W and Kirtley J L 1998 Electric Motor Handbook (New York: McGraw-Hill) p 166 

[5] Potra F A and Stephen J W 2000 Interior-point methods J. of Computational and Applied 

 Mathematics 124 (1–2) 281–302. 

[6] VORTEX II https://semi.asmpt.com/en/products/opto-photonics/transfer_bond/da/vortex-ii/ 

[7] Franklin G F, Powell J D and Workman M 1997 Digital Control of Dynamic Systems (Half Moon Bay: 

 Ellis-Kagle Press) 

[8] Emami-Naeini A and De Roover D 2019 Bode's Sensitivity Integral Constraints: The Waterbed 

Effect Revisited ArXiv abs/1902.11302 

[9] Heertjes M, Torres J Z and Al Janaideh M 2023 Fourth-order reference trajectories in lithography 

 stages with weakly-damped modes − a frequency-domain perspective 62nd IEEE Conf. Dec. and 

 Control 8696-8701 

[10] Jones D R and Martins J R R A 2021 The DIRECT algorithm: 25 years later 62nd J. Global Optim. 

 79 521-566 


