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Introduction 

Gravitational waves (GW) are ripples in space-time, induced by interactions between large interstellar 

objects. The information that these signals carry can lead to new insights about the universe and our 

understanding of physics (Schutz, 1999). The detection of gravitational waves is not trivial and is done 

by telescopes such as LIGO (Aasi & et.al., 2015), VIRGO (Acernese & et.al., 2004) and in the future the 

Einstein Telescope. All these telescopes rely on a similar operating principle, namely that of a laser 

interferometer. Such an interferometer measures the presence of a GW by sending a laser through 

two long perpendicular arms that generally have a length in the order of a few kilometers. The lasers 

are reflected by mirrors at the end of the arms, and interfere at the base of the telescope. The 

measured interference pattern can potentially be used to observe a GW passing by through earth, 

since a GW disturbs the space-time and thus the lasers, which on its turn induces non-destructive 

interference between the reflected laser beams. 

      The disturbance induced by the GW is very small and lies below the noise floor caused by the 

seismic activity of the earths surface. The mirrors should hence be isolated from the earths surface by 

a stacked combination of active and passive vibration isolation systems. Typically, the controllers for 

these type of suspensions are designed via classical methods, such as loop-shaping, which can be 

time consuming and require manual tuning when sensors, actuators or the telescopes noise budget 

changes. In this paper, we combine optimal control methods and Dynamic Error Budgetting (Jabben, 

2007) techniques to aid controller design for a payload suspension by utilizing a method that is more 

flexible to cope with possible changes in requirements or the system dynamics. This allows for quick 

evaluation of the potential performance of a specific telescope configuration, without relying on the 

experience of the designer. 

 

Problem Formulation 

Optical resonators, or Fabry-Perot cavities, that resonate the light are installed in the arms. The 

resonators increase the effective travelling distance of the laser, which increases the telescopes 

sensitivity. The mirrors that make up these resonators manipulate the direction of the laser beams 

and are isolated by multiple vibration isolation stages, to limit the influence of seismic noise up to the 

required sensitive range of the telescope. The vibration isolation system typically consists of an active 

 



isolation platform, which compensates for a part of the seismic disturbance. The isolation platform is 

followed by a set of consecutive pendulums, that are suspended from a large inverted pendulum that 

is connected to the platform (Bersanetti & et.al., 2021). The first set acts as a passive filter. The 

pendulums after the passive stage make up the payload suspension. The payload suspension is an 

actively controlled multi-pendulum system that compensates for any residual noise, based on the 

actual output that is measured by the photodiode at the base of the telescope. Figure 1 shows a 

simplified ideal physisical model of a 3DoF payload suspension that is actuated at the two upper 

stages, together with a schematic representation of the laser interferometer. The mirror stage is not 

actuated, since it is expected that the last stage does not provide sufficient roll-off, such that the DAC 

noise disturbs the telescope output beyond acceptable limits. The mass 𝑚3  denotes the mirror stage 

of the pendulum. The interference of the laser is measured by a photodiode at the base of the arms. 

 

Figure 1: Schematic overview of the laser interferometer, including an IPM of the suspension. 

Let 𝐺(𝑠) denote the transfer function of the suspension and 𝐾(𝑠) that of the controller. The 

actuators are modelled by gains 𝐾𝑎 that represent the sizing of the actuators and are considered as a 

part of the optimization, such that the total open-loop plant is 𝑃(𝑠) = 𝐺(𝑠)𝐾𝑎. Noise sources are 

often expressed as their open-loop equivalent, which is a common expression within gravitational 

wave disciplines. This open-loop equivalence concept is a result of how a GW is reconstructed from 

signals in the loop. To illustrate this, consider the feedback loop from the block-diagram that is shown 

in Figure 2. There are three inputs in the block diagram: the DAC noise 𝑢𝑑 , the seismic disturbance 𝑥𝑑 

and a gravitational wave signal 𝑓𝐺𝑊  that enters the control loop similarly to the seismic noise, after 



the plant output1. The DAC noise 𝑢𝑑  enters the feedback loop between the controller and the open-

loop plant 𝑃(𝑠). Reconstructing a GW from signals in the loop conceptually yields the following: 

 

 𝑥(𝑠) = (𝐼 + 𝑃(𝑠)𝐾(𝑠))
−1

𝑃(𝑠)𝑢𝑑(𝑠) + (𝐼 + 𝑃(𝑠)𝐾(𝑠))−1(𝑥𝑑 (𝑠) + 𝑓𝐺𝑊 (𝑠)) (1) 

 𝑓𝐺𝑊 (𝑠) = (𝐼 + 𝑃(𝑠)𝐾(𝑠))𝑥(𝑠) − 𝑃(𝑠)𝑢𝑑 (𝑠) − 𝑥𝑑(𝑠) (2) 

 

From the last equation, we can see that the open-loop equivalent DAC noise is 𝑃(𝑠)𝑢𝑑 (𝑠). The main 

aim of the control system is to attenuate the seismic disturbance, such that the Fabry-Perot cavity is 

stabilized. To achieve this, the RMS of the closed-loop seismic noise should be reduced to a value of 

less then 1 ∙ 10−13𝑚. The actuators introduce DAC noise, which should not exceed the telescope’s 

noise budget design. The sensitive range of the telescope is expressed as a noise budget, which is an 

open-loop equivalent spectrum that indicates the sensitive operating range of the telescope and may 

not be exceeded by any noise source (Moore, Cole, & Berry, 2014). Therefore, a limit must also be 

imposed on the open-loop equivalent DAC noise.  

 

Figure 2: block diagram of a standard feedback loop including the suspension and controller . 

 

Optimization 

The attenuation of the seismic disturbances is an energy based minimization. This can be interpreted 

as an 𝐻2-optimal control problem, if the input signals are unit intensity white noise signals. Coloured 

noise signals that represent real disturbances can be included by adding input weighting filters 𝑉(𝑠) 

that contains models for the root of the actual noise spectra (Spanjer, Köroğlu, & Hakvoort, 2023). 

 
1 Note that this modelling choice implies that the suspension dynamics are part of the filter 𝑉𝑥(𝑠) that models the 

effect of the seismic noise at the mirror output, hence there exists a difference between 𝑥0 at the base of the 
suspension and the disturbance 𝑥𝑑 at the mirror. 



Since the open-loop equivalence of the DAC noise should not exceed the noise budget design of the 

telescope, this requirement is captured best by an 𝐻∞-constraint on the open-loop equivalent 

spectrum. Since an 𝐻2-optimal controller generally results in a system that is marginally stable, an 

additional 𝐻∞-constraint is included to guarantee sufficient margin against process variations. An 𝐻2-

constraint on the controller command 𝑢(𝑠) regulates this signal to a reasonable range for the DAC. 

Let 𝐹𝑙(𝑠) denote the linear fractional transformation of 𝐺(𝑠),𝐾(𝑠) and 𝐾𝑎 which is the closed loop 

that maps 𝒘̃ → 𝒛̃, with 𝒘̃ = [ 𝑢𝑑 ,  𝑥𝑑]
𝑇

.  𝒛̃ = [𝑢, 𝑥, 𝑥]𝑇. The optimization is then mathematically stated 

as follows: 

  

 

𝛩 =  𝑎𝑟𝑔 𝑚𝑖𝑛 |𝑊𝑝(𝑠)𝐹𝑙(𝑠)𝑉(𝑠)|
2

             𝑠. 𝑡. 

|𝑊𝑑𝑎𝑐(𝑠)𝑃(𝑠)𝑉(𝑠)|∞ < 𝛾𝑑        |𝑊𝑟𝑜𝑏 (𝑠)𝑆(𝑠)𝑉(𝑠)|∞ < 𝛾𝑟        |𝑊𝑢(𝑠)𝐹𝑙(𝑠)𝑉(𝑠)|2 < 𝛾𝑢  

𝐾𝑎,𝑙 ≤ 𝐾𝑎 ≤ 𝐾𝑎,𝑢  

 

 

 

(3) 

Where 𝑊𝑑𝑎𝑐(𝑠) and 𝑊𝑟𝑜𝑏 (𝑠) are 𝐻∞ related weigting filters regarding the open-loop equivalent DAC 

noise and robustness constraint respectively. Since the DAC noise should stay below the noise budget 

design of the telescope, a logical choice for the filter 𝑊𝑑𝑎𝑐 (𝑠) would be the exact inverse of the 

sensitivity curve, possibly scaled to incorporate some safety margin. The robustness filter constrains 

the peaks of the sensitivity function 𝑆(𝑠) =  (𝐼 + 𝑃𝐾)−1 , whose inverse is directly related to the 

modulus margin of the system. 𝑊𝑟𝑜𝑏 (𝑠) should thus be taken as the desired modulus margin. The 

filters 𝑊𝑢(𝑠) and 𝑊𝑝 (𝑠) are filters related to the control signal and seismic disturbance performance 

outputs respectively. Since the optimizer will minimize the energy of the associated signals, the 

weighting filters are chosen as gains.  The filter 𝑉(𝑠) is a diagonal transfer function matrix with 

models for the DAC noise and seismic noise. Besides the controller, the actuators are also considered 

as part of the optimization, such that they can be scaled to limit the DAC noise that is amplified by the 

actuators. These are bounded to a reasonable range, set by the lower limit 𝐾𝑎,𝑙  and upper limit 𝐾𝑎,𝑢. 

The associated cost function is inherently non-convex due to the mixed 𝐻2/𝐻∞-optimization, hence a 

non-smooth optimization method  (Apkarian & Noll, 2006) is utilized to solve for a suitable controller 

and actuator distribution. 

 

Results 

The results from the optimization are summarized in Figure 3 and Figure 4. From the left figure, it can 

be seen that the controller is able to supress the seismic noise close to specifications, with a closed-

loop RMS of about 5.89 ∙ 10−13𝑚. Actuation at only the two top stages is therefore not able to satisfy 



the required attentuation of the seismic noise. The figure on the right shows the open-loop 

equivalent DAC noise. Around 2Hz, the open-loop DAC noise touches the inverse of the weighting 

filter, indicating that the optimizer is able to size the actuators to meet the DAC noise requirement 

well, with 𝛾𝑑 ≈ 1.   

Figure 3: CPS of the closed-loop seismic noise.    Figure 4: Open-loop equivalence of the DAC noise. 

Finally, from the Nyquist plot that is shown in Figure 5, we can see from the green circle around the 

critical point that the robustness constraint allows to enforce the desired modulus margin of 0.1, as 

dictated by the robustness weighting filter. The robustness margin is allowed to be small, since the 

dynamics of the suspension can be identified with very high accuracy. The operating conditions are 

generally also very constant for this type of application. 

 

Figure 5: Nyquist plot of the loop gain and zoomed view around the critical point. 

Conclusion 

Summarizing, the problem formulation for the last active vibration isolation stage of the mirror 

suspension of a gravitational wave telescope can be casted in to a mixed 𝐻2/𝐻∞-control problem. A 



non-smooth optimization method was utilized to solve the inherently non-convex problem. The 

seismic noise is not attentuated according to specifications, hence system configuration should be 

modified to design a control system that meets the requirements. Since the optimizer allows to tune 

parametrized dynamic systems, as demonstrated with the actuator distribution, this work can be 

extended with a simultaneous controller and suspension dynamics design for a more integrated 

design strategy that possibly improves the overall performance of the control system. 
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