euspen SIG Meeting

Nov. 28, 2023

Self-standing process by using bimetallic effect of thin-film metallic glass

Shiyu TAKENORI, Yongjie CHEN, Chiemi OKA, Junpei SAKURAI, Seiichi HATA

Dept. of Micro-Nano Mechanical Science and Engineering, Nagoya Univ. Japan

Contents

- 1. Introduction
- 2. Sample fabrication
- 3. Improving angles of deformation
- 4. Conclusions

1. Introduction

Background

The microprobe hot-wire velocimeter [1]

- Aiming to improve fuel efficiency of engines and turbines
- Micro thermal wires placed at the tip (sensing area)
- Heated thermal wires cooled by air flow
 - → Measuring flow velocity and gas concentration from output of voltage change of hot wires

1/13

1. Introduction

Background

Problems in the previous study

- Manual assembly of probes fabricated by planar process
- Difficult to achieve 3D structures with conventional processes
 - \rightarrow Integration for multi-component flow velocity measurement
 - \rightarrow Need to face the hot wire vertically in flow velocity measurement

Fabrication of 3D structures by self-assembly process

Development of a new fabrication process for 3D micro forming

 \rightarrow The probe is self-supporting at a deformation angles of over 90° relative to the substrate.

[2] Nagai R, Onishi T, Oka C, Sakurai J and Hata S 2022 Self-standing process for microprobes Proceedings of JSME International Conference of Materials and Processing 2022

1. Introduction

3D micro forming using thin-film metallic glass (TFMG)

Metallic glass

- Deformed by viscous flow in supercooled liquid range $T_g < T < T_x$
- Conductive, enabling 3D wiring

Molding by heating-deformation method

Molding process by using viscous flow during heating, applying an external force

- \rightarrow Utilizing the self-weight of the Si probe
 - \rightarrow Difficult to achieve greater than 90°

3/13

Purpose

Investigation of self-assembly process of 3D MEMS structure for ultra-small flow velocity sensors

Contents

- Fabrication of samples for investigation of self-standing microstructures
 - Fabrication process
 - Results of fabrication
- Improving angles of deformation
 - Improvement by using bimetallic effect of metallic glass
 - Results of deformation
 - Causes of deformation irregularity

[2] Nagai R, Onishi T, Oka C, Sakurai J and Hata S 2022 Self-standing process for microprobes Proceedings of JSME International Conference of Materials and Processing 2022

2. Sample fabrication

Fabrication process

Bimetallic effect of Thin-film metallic glass

6/13

Fabrication process for utilizing bimetallic effect

Results of deformation

Heating treatment conditions

- Temperature : 560°C (* T_g = 557°C)
- Heating rate : 20 K / min
- Heating time : 5 min

<u>Results</u>

- Increasing deformation angles
- Max deformation $157.3^{\circ}(L = 2.00 \text{ mm})$
- Significant deformation irregularity

77.6° ± 44.8° (L = 1.00 mm)

L=1.00, 107.5[°] [2] Nagai R, Onishi T, Oka C, Sakurai J and Hata S 2022 Self-standing process for microprobes Proceedings of JSME International Conference of Materials and Processing 2022

Causes of deformation irregularity

Expected factors

- Film thickness variation in both layers
- Variation of heating temperature on a substrate

Investigation of film thickness

To assess thickness variations of each layer

Simplified model analysis

- To consider the effect of film thickness and heating temperature on deformation
- Uncovering tendency of deformation on each parameters

9/13

10/13

Probe

Causes of deformation irregularity

Analysis of the bimetallic effect

$$\theta_{bimetal} = \frac{6E_1(T - T_0)(\alpha_1 - \alpha_2)th_1}{2th_1E_1(2h - h_1) + \eta h(h - h_1)} l \qquad (1)$$

$$\ln \eta = \ln 7.0 + \left(30 - \frac{T}{20}\right) \ln 10 \qquad (2) \qquad \text{Si substrate} \qquad \text{Hinge} \qquad \text{Probe}$$

 $\theta_{bimetal}$: Deflection angle *l*: Hinge length, *t*: Deformation time, η : Viscosity of TFMG layer

 E_1, E_2 : Young's modules of Au and TFMG layer

 α_1, α_2 : Coefficients of Liner Thermal Expansion of Au and TFMG layer

 T_1, T_0 : Heating temperature, Original temperature h_1, h_2, h : Thickness of Au, TFMG layer and bimetallic layer

Variables

- Hinge length L = 1.0, 1.5, 2.0 mm, Heating temperature $T = 560 \text{ }^{\circ}\text{C} \pm 2\%(548.8^{\circ}\text{C} 571.2^{\circ}\text{C})$
- Thickness of Au layer $h_1 = 1 \ \mu m \pm 10\%$
- Thickness of TFMG layer $h_2 = 10 \ \mu m \pm 10\%$

	Young Modules [GPa]	Coefficient of liner expansion [1/K]	Viscosity [GPa·s]	Length of hinge [mm]	Temperature [C°]	Time [s]
Au Layer	78	14.2 × 10 ⁻⁶	e 193	Ţ	T	200
Ni-Nb-Zr Layer	30	8.00 × 10 ⁻⁶	η	— L	1	300

[3] Hata S, Goto J, Sato K, Shimokobe A 2000 Fabrication of Micro Structures using Thin Film Metallic Glass - Fabrication of Thin Film Metallic Glass and Micro-Forming using the Supercooled Liquid State

Causes of deformation irregularity

Analysis of the bimetallic effect

Conditions for maximum deformation angles

 $\theta_{bimetal} = 62.1 \deg$

$$L = 2.0 \text{ mm}$$
, $T = 571.2^{\circ}C$,

$$h_1 = 0.9 \ \mu m, \ h_2 = 9 \ \mu m$$

 $h_1:$ Thickness of Au Layer, $h_2:$ Thickness of TFMG Layer

- Deformation irregularity : proportional to hinge length
 - ⇒The smallest hinge length with a deformation angle of greater than 90°
- Greatest factor for deformation : Temperature
- Second greatest factor for deformation : Thickness of TFMG Layer

11/13

Table 1. Condition for the upper one-thirddeformation angle at hinge length L = 2.0 mm

Deflection angle [deg]	Au layer thickness [µm]	TFMG layer thickness [µm]	Temperature [℃]
62.1	0.9	9	571.2
61.9	1	9	571.2
61.6	1.1	9	571.2
56.1	0.9	10	571.2
55.9	1	10	571.2
55.7	1.1	10	571.2
52.9	1.1	9	560
52.6	1	9	560
52.2	0.9	9	560

Causes of deformation irregularity

Comparison of respective parameters

- $T = 560^{\circ}\text{C} \pm 2\%$ (548.8°C~571.2°C), $h_2 = 10 \,\mu\text{m} \pm 10\%$, $h_1 = 1 \,\mu\text{m} \pm 10\%$
- Largest contributor : Temperature
- Low effect by Thickness of Au layer
 - \Rightarrow Attention should be paid to the heating temperature.

 $*h_2$: Thickness of TFMG Layer, h_1 : Thickness of Au Layer

4. Conclusions

Conclusions

We investigated the basic process for fabricating self-standing microstructures using Ni₅₇Nb₁₇Zr₂₆ thin-film metallic glass (TFMG).

- Deformation was not enough with simple TFMG hinge.
- Deformation greater than 90° was achieved by depositing Au layer on TFMG layer as a bimetallic layer.
- Significant deformation irregularity has happened.
- Attention should be paid to heating temperature.

Future works

- Conducting experiments to investigate the effect of heating temperature on the deformation angle.
- Improving deformation accuracy by control the thickness of both layers and heating temperature
- Realizing self-standing 3D structure
- Self-assembly using the surface tension of molten solder

