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Abstract 

Noise produced in manufacturing and measuring process are often high-frequency 
components and outliers, these will cause the inaccuracy of feature determination. 
Surface denoising is a crucial metrological operation in surface characterisation 
to suppress noise from areal surface. It usually called filtration for processing 
profile data. ISO standards filters such as Gaussian filters and wavelets filters have 
been proved successful on stochastic surfaces. PDE diffusion filter has been 
subsequently raised to address edge distortion in structured surface denoising. The 
main issue is that they all require manual parameter tuning for individual surface. 
This process costs time and relies on expert-knowledge of users. To date, the deep 
learning techniques are becoming dominated in image processing tasks including 
denoising, object detection and classification, which would also have great 
potential to benefit surface metrology. This paper proposed a deep learning-based 
method applying a classic deep Convolutional Neural Network to perform surface 
denoising task. The model is trained on a small training dataset of freeform 
structured surface measurements. The experimental results show that retrained 
neural network can automatically suppress unknown noises and outliers of the 
surfaces, meanwhile well retain the geometry of structures on the surface. The 
major contribution is that we newly apply a deep convolutional neural network to 
replace traditional filters and achieve automatic surface denoising. It can output 
denoising results within average one second, which shows a high application 
value for constructing future smart metrology system. The training process can be 
efficiently implemented on GPU at a low cost.  
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1 Introduction 

Metrology is the science of measurement aims to increase measurement speed, 
accuracy and cost-effectiveness in order to improve production efficiency and 
control many operations on engineering components. Surface characterisation as 
a crucial metrological operation is defined to quantify the surface topography and 
texture with feature extraction and pattern analysis using a set of parameters that 
indicate the quality of the surface and interpret functional properties such as 
optical quality, service life, and reliability of the surface [1]. Engineered surfaces 
can be divided into two categories: structured surfaces and stochastic surfaces [2]. 
Surfaces with a dominant stochastic feature pattern are termed ‘stochastic 
surfaces’, and well-established characterisation techniques, such as filtration and 
spectral analysis, are available for this type of surface [3]. Structured surfaces are 
surfaces with a deterministic pattern that usually have a high aspect ratio to 
achieve a specific function [4]. A general surface characterisation scheme for the 
complex freeform structured surface is shown in fig. 1. Three steps are usually 
conducted prior to feature characterisation: form removal, denoising and 
segmentation. F-operator is the initial procedure that separates reference form 
from surface topography data to diminish the effects of nominal geometry on 
denoising. Denoising is the next step, aiming to reduce the impact of measurement 
noise and help identifying the features from surface texture.  

Figure 1: A general surface characterisation scheme for freeform structured 
surface 

Figure 2: Areal surface decomposition process for characterisation 
In the measurement of many real engineering surfaces, noise distribution is more 
diverse and hybrid. The most widely used filters include Gaussian/spline filters, 
wavelets and morphological filter, all performing well on stochastic surfaces with 
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appropriately chosen parameters [5]. However, for engineering surfaces with 
structured features such as steps and grooves, as the high-frequency noise and 
outliers still exist, it is difficult for these traditional filters to accurately decompose 
structure from noise and outliers without any edge distortion [2]. PDE-based 
diffusion has been proved to have good structured-preservation property on step 
features [1]. The major drawback is that we need to choose appropriate filter for 
each input surface according to the type and feature based on expert-experience, 
then tuning parameters through trials. Furthermore, it’s hard to filter different-
level noise using one identical value of parameter, which means filters cannot 
achieve automatic denoising for multiple surfaces. To address these challenges, 
we apply deep learning techniques to construct a smart denoising framework due 
to its unique characteristics. Firstly, the Convolutional Neural Networks (CNNs) 
are usually designed to process image or volumetric data, which are also the 
typical data representations of the freeform structured surface [1]. In addition, 
CNN's deep design boosts its flexibility and capability for exploiting surface 
features [6].  
     This paper proposes a novel surface denoising approach based on the 
Denoising Convolutional Neural Network (DnCNN) [7] to remove unknown 
mixed noise from the freeform structured surfaces without the requirement of 
manually filter selection and parameter tuning. Once the network has been trained, 
it can denoise an arbitrary input surface within the average time of 1s 
automatically. Due to the limited number of engineering surface samples, data 
augmentation techniques are integrated in network to enlarge the training data to 
improve performance and uniform data size. The results show that our neural 
network has remarkable denoising effects on various types of freeform structured 
surfaces with good structure-preservation property. Image quality full reference 
metrics (PSNR and SSIM) are here used to evaluate the denoising performance 
for model optimisation.  

2 Brief literature review of CNN denoising 

     Deep learning-based approaches feature the characteristics of generalisation 
and robustness, which implies they can be employed for different data types and 
applications. During past years, DL applied for image denoising has received 
more attention due to its effectiveness in removing diverse types of noise from 
images, including real noise, blind noise, additive white Gaussian noise and 
hybrid noise [8]. One of the traditional neural networks structures is the 
multilayer perceptron (MLP) [9] consisting of hidden layers and nonlinear 
activation functions which use the backpropagation algorithm [10] and the loss 
function to train the model. The main disadvantages are disregarding of spatial 
information and inefficiency due to redundancy in high dimensions. Compared 
with MLP, convolutional neural network (CNN) is one of the most powerful 
models for performing various image processing tasks due to its end-to-end and 
local connectivity properties [11]. CNN-based methods are not only able to 
preserve spatial information but also offer a more effective and efficient way to 
match complicated patterns for matrix data. Chiang and Sullivan [12] were the 
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first to utilise DL techniques for image denoising tasks, with the known shift-
invariant blur function and additive noise to reconstruct the latent clean image, 
then using weighting factors to remove complex noise. The denoising CNN 
(DnCNN) proposed by Zhang et al. [7] has been verified as an efficient model, 
which can handle unknown mix-level noise based on residual learning strategy 
and batch normalization (BN) [13]. In terms of blinding denoising, a fast and 
flexible denoising CNN (FFDNet) can be presented with noisy image patches 
and different noise level masks as the input of the network to improve denoising 
speed and process blind denoising [14]. A convolutional blind denoising network 
(CBDNet) is proposed to remove noise from the given real noisy image by two 
sub-networks, one responsible for estimating the noise and the other estimating 
the latent clean image [15]. Due to most surface noises are folloing Gaussian 
distribution in mixed-level, DnCNN is adopted to denoise surface as an efficient 
and simple model to handle different levels of Gaussian noise, and it is also 
friendly to the small training dataset because its architecture design has higher 
flexibility and capability for exploiting surface features [16]. Therefore, it is 
employed here as the fundamental neural network to perform the surface 
denoising task.  

3 Framework of deep learning denoising method      

3.1  Architecture of DnCNN  

DnCNN is proposed to process different levels of unknown noise, hence which is 
selected to employ into performing the denoising task for freeform structured 
surface. The denoising objective can be written as y = x + n, where y denotes 
noisy image; x denotes the clean image; and n means noise map. It is constructed 
based on two techniques to get better performance, that are residual learning [16] 
and batch normalization [17]. The integration of these two strategies can result in 
better denoising performance. The pre-defined DnCNN is a supervised learning 
with a total of 59 layers, including one input layer and one regression output layer, 
20 convolutional layers for feature mapping, 18 batch normalization layers for 
mini-batch training and 19 rectified linear units (ReLU) layers [18] for limiting 
exponential growth of computational cost. Fig.3 depicts the basic architecture of 
DnCNN. The output of network is to estimate the noise distribution from training 

data. To meet the metrological requirements for surface denoising, we need to 
retrain the network using our surface data and optimise model to achieve the 
denoising accuracy with conserving structures. 

Figure 3: Basic architecture of pre-defined DnCNN [7] 
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3.2  Framework of surface denoising 

The quickest and most straightforward method for noise removal application on 
surfaces is using the pre-trained DnCNN model. However, it is not trained based 
on freeform structured surface data samples, and the noise level and distribution 
are not the same as the general images, so the performance is not acceptable for 
metrological requirements. In terms of the kinds and intensities of noise it can 
identify, the pre-trained network also does not offer a lot of flexibility. To train a 
denoising DnCNN that can handle unknown hybrid noise of engineering surfaces 
based on pre-defined layers, the model is constructed in three parts: data pre-
processing, model training workflow and denoising workflow. Starting from data 
pre-processing, the raw dataset will be first processed by filters to get noisy-clean 
pairs, and then divided into training, validation and test dataset. Training and 
validation datasets are enlarged using data augmentation technique which 
randomly crops raw images into patches with rotations, each image with a square 
patch size 50 × 50. Then adding different-level Gaussian noise into each patch 
and forming to mini-batch for training in each epoch. To improve performance, 
we define some training options to customise the denoising neural network for 
satisfying metrological requirements. The specific optimisable parameters are 
listed in Table 1 with definitions and default values (range). The 
‘GaussainNoiseLevel’ is used to specify the noise deviation scope and distinct 
values are chosen within it for every patch. ‘MiniBatchSize’ decides the training 
dataset size per iteration and ‘N_layers’ constructs the network depth that denotes 
the number of Conv layers. ‘MaxEpoch’ and ‘training method’ impact the model 
accuracy and convergence. Training optimiser can be chosen from stochastic 
gradient descent with momentum (SGDM), root mean square propagation 
(RMSProp) [19] and adaptive moment estimation (ADAM) [20]. The trained 
DnCNN network is evaluated by test dataset including different types of freeform 
structured surfaces with features, using image quality metrics intuitively.   

Table 1. Parameters options for DnCNN training 
Training parameters Definition Default 

'PatchesPerImage' Number of random patches per image 512 

'GaussianNoiseLevel' Range of standard deviation of Gaussian noise [0, 1] 

'MiniBatchSize' Size of mini batch to use for each iteration 128 

'N_layers' Number of ‘conv’ layers 20 

'MaxEpochs' Maximum number of epochs 30
'Training methods' ‘adam’(selected), ‘sgdm’, ‘rmsprop’ ‘adam’

Based on above, the framework of our DnCNN-based surface denoising model is 
designed based on the above model architecture, as shown in fig. 4. Steps of our 
implementation are following: 

i. Collect raw surface measurements and obtain noisy-clean surface pairs. 
ii. Establish ‘Image Datastore’ to store greyscale images converted from surface 

data and divided into the training dataset and the validation dataset. 
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iii. Create ‘Denoising Image Datastore’ to store generated training patches from 
the raw dataset using data augmentation techniques. 

iv. Load predefined DnCNN layers as the fundamental network. 
v. Retrain and optimise the surface denoising network by defining training 

options. 

Figure 4: Framework of DnCNN-based surface denoising approach 

4 Experiments 

4.1  Training with  parametric analysis 

The raw dataset contains a small amount of grayscale images (30 samples) which 
are converted from various measured freeform structured surfaces in latticed-grid 
data representation. The neural network is trained in MATLAB platform (2022a) 
on GPU. The average training time is 95.26 mins. The metrics used for evaluation 

are PSNR and SSIM. Peak Signal to Noise Ratio (PSNR) is to calculate the ratio 
between the maximum possible power and corrupting noise [21]. The larger 
PSNR value, the better reconstruction. Structured Similarity Indexing Method 
(SSIM) [21] is an assessment index which converges to 1 indicating higher 
similarity with ideal clean surface and better structure-preservation.  
     To optimise model with parametric analysis, a typical MEMS surface from 
validation dataset is selected to show results for different parameters settings. We 
choose nine groups of settings for comparison and analysis as shown in fig.5. The 
sectioned profiles show the results more institutively with edge conditions and 
structure smoothing. From the profile analysis it shows the denoising accuracy is 
acceptable that only removing non-relative and high-frequency noise but 
conserving feature patterns for surface parameterisation. The red stars in metrics 
shown in fig.6 indicate the fourth group of parameters have highest scores. Hence, 
the optimal settings are 'PatchesPerImage' = 512, 'GaussianNoiseLevel' = [0.001, 
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0.999], ‘MiniBatchSize’ = 16, ‘N_layers’ = 10, ‘MaxEpochs’ = 10. To deeply 
obtain the optimum option, it needs model selection process to choose from 
hundreds of parameter combinations. 

Figure 5. Section profiles of denoised surfaces for different parameters settings 

Figure 6. Metrics comparison of models 
Fig.7 shows the 2.5D areal surface denoising performance verified with optimal 
model. Both high-frequency noise and significant outliers in structures and 
reference form are reduced remarkably. 
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Figure 7. Test performance on areal surface 

Increasing the "GaussianNoiseLevel" will typically result in more diverse training 
patches and improved accuracy. The higher "MiniBatchSize" is more able to 
cause local minima convergence, then some inconsequential noise cannot be 
recognised and filtered, while the smaller "MiniBatchSize" value delivers the 
better denoising effect due to more gradient updates. Deeper "N layers" will 
achieve more precise fitting with a lower RSME value, while still preserving some 
small-scale noise in structures. A proper trade-off between "MiniBatchSize" and 
"N layers," where the smaller "MiniBatchSize" should balance out the higher 
value of "N layers," is crucial. In order to improve training accuracy and 
effectiveness, it is preferable to shorten the "MaxEpochs" time.

4.2  Test model 

Figure 8 shows results of applying optimised model on some other freeform 
structured surfaces. Seen from figure 8 that the deep learning model works well 
on more complex freeform structured surfaces. The profile section clearly 
verifies the denoising performance with property of pattern-conservation, which 
guarantees the accuracy for further parameterisation operation to assess the 
attributes of features. For those it is not easy to select appropriate filters and 
parameters values to meet requirements. Therefore, our deep learning-based 
surface denoising approach has a certain degree of universality for various 
freeform structured surfaces with only a small number of samples for training, 
which means it has high generality and applicability to potential practical 
applications.   
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Figure 8. Test performance on areal surface 

5 Conclusion       

Overall, surface denoising task is firstly accomplished using a deep convolutional 
neural network-based method that includes data augmentation, residual learning, 
batch normalisation, and parameter optimization. In order to achieve noise 
estimation with better denoising performance and training efficiency, residual 
learning integrating batch normalisation is used; data augmentation is used to 
increase training accuracy; parameter optimization serves as a guide for training 
customised models based on various datasets. According to the experiments, our 
approach successfully denoises various types of freeform structured surfaces 
while maintaining their structural integrity. Additionally, once the model has been 
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trained, neural networks can automatically handle the unknown hybrid noise at 
diverse levels under one second on average, and they exhibit remarkable noise 
reduction effects by separating mix-level noise with structures. This is in contrast 
to classic filters, which require parameter tuning for each unique input. The 
outcomes demonstrate the capability and usefulness of the suggested neural 
network for surface metrology. The training process' optimization, which is based 
on parametric analysis, provides users with application assistance. The ability to 
achieve intelligent denoising without the need to choose appropriate filters based 
on the different input surfaces and get ideal parameters through the test phase is a 
key benefit that is user-friendly for non-expert users. 
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