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Abstract 
 

Compensating thermal errors using predictions from temperature-based 

empirical thermal error models is a widely used and convenient approach for 

mitigating the effects of the errors. However, thermal error models are often 

trained on small datasets that are not representative of all situations that the 

machine, and so model, may encounter during online use. Various adaptive 

strategies have been proposed to help models overcome this problem, such as 

intermittent model update strategies. One challenge that remains open is how 

such strategies can be automated. 

     This work proposes the use of modal analysis through Proper Orthogonal 

Decomposition (POD) and Hidden Markov Models with Gaussian Mixture 

Model emissions (GMM-HMM) in characterizing the thermal state of a machine 

tool. Performing a windowed POD analysis on the temperature data results in 

POD modes that define the heat cycles experienced during the windowed period. 

GMM-HMM are then used to cluster the POD modes. The approach correctly 

classifies various temperature data from all but one of the test datasets with True 

Positive Rate (TPR) value of over 61%. The presented approach can achieve 

higher accuracies through implementing the discussed improvements and be 

incorporated into the thermal error modelling strategy to inform adaptive 

modelling strategies. 

 

 

1 Introduction 
 

Reducing the effects of thermal errors on the precision of machine tools is an 

important aspect in ensuring that machining can achieve design tolerances and 

avoid losses incurred due to part rejection. It is estimated that as much as 50% of 

waste production can be attributed to thermal errors [1]. Compensating these 

errors using predictions from empirical thermal error models is a widely used 
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and convenient approach for mitigating the effects of temperature change. These 

models are primarily trained using temperature measurement data obtained from 

key points of the machine tools as inputs. The models learn a mapping function 

from these inputs to the axis-specific thermal errors. However, obtaining 

training data is expensive in time and cost since machine tools are required to be 

taken out of production to measure the thermal error from various heating 

experiments. Thus, thermal error models are often trained on small datasets that 

are not representative of all situations the machine, and so model, may encounter 

during online use [2-4]. Various adaptive strategies have been proposed to help 

models overcome this problem such as intermittent model update strategies.  

     Ramesh et al [3] used a Support Vector Machine (SVM) model to classify 

features extracted from temperature measurements into one of three groups 

representing different sets of machining conditions (parameters). An SVM 

thermal error model was also trained for each of the classes. The features used 

were obtained through study of one particular machine tool. The authors then 

used the appropriate thermal error model based on the classification results. 

Ramesh et al [2] used a Bayesian Network (BN) model and a rule-based system 

to classify temperature measurements into one of three classes representing 

different sets of machining conditions. Compensation under each of the 

conditions was achieved using an SVM thermal error model for that condition. 

Creation of the BN model and rule-based system required a good understanding 

of the machine tool and the relationship of temperature sensor locations on it. 

Blaser et al [5] used periodic thermal error measurements to determine if the 

residuals from a thermal error model were higher than a defined tolerance band 

and trigger a cycle to update the thermal error model. However, the periodic 

thermal error measurements result in a drop in productivity since they interrupt 

the machining process. Zimmermann et al [4] used SVM models to detect 

anomalous temperature measurements and trigger update cycles needed by the 

thermal error model to adapt to changes in machining conditions. An SVM 

model was developed for each temperature sensor that had been selected as an 

input to the thermal error model. Each SVM model had two inputs: the 

difference in the instantaneous measurement from a reference measurement at 

the start of the experiment, and the rate of change of the measurement. The 

SVM models were then used to score temperature measurements as being in or 

out of class. The approach resulted in a 78% reduction in the number of 

triggered updates when compared to a periodic model update approach. This 

translates to an increase in productivity.  

     Though updating the thermal error model is beneficial in adapting to 

changing machining conditions, there is still a need for retaining models which 

are adapted for certain machining conditions, since those conditions could be 

experienced again depending on the nature of production. This could increase 

productivity by reducing the need for retraining or relearning mappings for such 

conditions. One approach of achieving this could be to discretise the possible 

range of machining parameter values (spindle speeds, feed rates, dept of cuts) 

and train a model for each combination of discrete values. However, the number 

of combinations can lead to a large number of thermal error models which 
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would reduce the efficiency by increasing the complexity of training and 

maintaining the models. Brecher and Wissmann [6] discretised the spindle speed 

at six points and the effective power of the main spindle at four points. Two 

thermal error models were then developed for each combination of points (one 

for the heating cycle and one for the cooling cycle). The thermal error 

compensation was performed using predictions from one of the resulting forty-

eight models based on the value of spindle speed and effective spindle power 

obtained from the numerical controller. One way of avoiding the combinatorial 

explosion of models is establishing a method to determine how similar any two 

sets of machining conditions are, based on temperature measurements from key 

points of the machine tool. This would be beneficial in implementing adaptive 

and automated thermal error modelling strategies.  

     Temperature measurement data from machine tools is usually characterised 

by high dimensionality and correlations that vary in time depending on the 

prevailing heating cycles. Ariaga et al [7] used Proper Orthogonal 

Decomposition (POD) analysis on a sliding window of data to obtain POD 

modes. POD modes in this application were synonymous to vectors in the space 

spurned by the temperature measurements, “temperature space” and pointed in 

directions that depended on the heating cycles within the sliding window. K-

means clustering was then used to determine centroid POD modes (descriptor 

POD modes) which could represent a range of similar POD modes. 

Consequently, the temperature data being evaluated was characterised by a set 

of descriptor POD modes. The cosine distance metric was then used to 

determine how close these descriptor POD modes were to any POD modes 

extracted from a different temperature dataset. This paper builds on the approach 

presented in [7]  by first using modal analysis to characterise the thermal state of 

machine tool. Hidden Markov Models with Gaussian Mixture Model emissions 

(GMM-HMM) are then used to model the sequential nature of the POD modes 

and obtain a probabilistic similarity measure.   

 

2 Methodology 
 

The process of characterising a dataset of temperature data and comparing 

whether two temperature datasets were generated under the same machining 

conditions is summarised in Figure. This section introduces the POD and GMM-

HMM modelling as used in this paper.  

 

2.1  Proper Orthogonal Decomposition (POD) 

 

A window of fixed width, m sequential samples, is slid across the dataset of 

temperature data obtained from n temperature sensors with respect to time and 

POD is performed on the data within the window. This approach is used because 

it is adaptable to online use and only factors most recent temperature 

measurements at any evaluation instant. POD is performed by obtaining the 

Singular Value Decomposition (SVD) of the mean subtracted data as 

summarised in the following equation 
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  (1) 

  

     Where  is the mean subtracted data from n temperature sensors at 

m sampling instances. , , and  are the outputs from SVD where    

are left singular vectors,   is a diagonal matrix of singular values, 

  are the right singular vectors. Both the left and right singular 

vectors are orthogonal column vectors.  The left singular values represent the 

correlations of the temperature sensors and form the POD modes of the data 

while the right singular vectors represent the time specific weightings needed to 

linearly combine the POD modes. The singular values are ordered in decreasing 

absolute values where each singular value represents how much dispersion of 

the data occurs along the direction of the corresponding POD mode. Most of the 

dispersion in the data is captured by the leading POD modes which forms a basis 

for the use of POD in data dimensionality reduction applications [8]. 

     In this paper, only the first POD mode is used for clustering application and 

is shown to account for most of the dispersion. Using the first mode also reduces 

the complexity of modelling the thermal state. The first POD mode at each 

evaluation is also scaled by its singular value to enable differentiation of similar 

heating patterns that result in different rates of heating. POD modes from such 

data will point in nearly the same direction in temperature space but their 

singular values will have significant differences. 

 

2.2  Hidden Markov Models with Gaussian Mixture Model emissions 

(GMM-HMM) 

 

Certain dynamic systems possess a hidden state which governs their observable 

behaviour. An example of this is the health status of an animal which cannot be 

measured, except through measuring observable symptoms such as behaviour 

patterns (eating, sleeping, and playing) or body temperature (cold, normal, and 

hot). The hidden and observable states of such systems can take on both discrete 

values or continuous values such as temperature measurements. Such a system is 

said to obey the Markov property if the current value of its hidden state  is a 

probability function of its value at the previous time instant and independent of 

all other previous values and if the current value of the observable state is a 

probability function of the current value of the hidden state and independent of 

all previous values of both the hidden and observable states [9]. Such systems 

are also called Markov processes. Hidden Markov Models (HMM) are used to 

model Markov processes whose hidden and observable states take on discrete 

values such as DNA sequence data which is made up of a sequence of discrete 

protein members [10]. 

     Figure 1 shows the health status of a person visualised as a Markov process. 

The hidden state takes on two discrete values (HEALTHY or SICK) while the 

observable state is the measured body temperature which is a continuous value. 

The range of body temperature values is represented by three discrete state 

values (COLD, NORMAL, and HOT) using three Gaussian models. This 

enables the Markov process to be represented by a HMM model. The parameters 
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of the HMM model include the probability of the hidden state transitioning to a 

given value from its current value. For the example in Figure 1, a person who is 

currently “HEALTHY” will remain “HEALTHY” with a probability of 0.6 or 

will become “SICK” with a probability of 0.4 in the next time instant. The 

HMM is also parametrised by the probability of observing a certain state value 

for a given hidden state value. For example in Figure 1, a person who is 

currently “SICK” will be observed to have a “NORMAL” body temperature 

with a probability of 0.2.  

 

 
Figure 1: Example of a GMM-HMM model of the health status of a person 

 

     The thermal state of the machine tool can also be represented as a Markov 

process since the temperature change patterns are governed by the (hidden) 

machining operation being carried out. POD modes indicate the direction of the 

temperature change in a continuous temperature space and form the observable 

state values of the system. Gaussian Mixture Models (GMM) can be used to 

model continuous observable state values with multiple dimensions such as 

POD modes. Therefore, the thermal state of a machine tool can be modelled 

using Hidden Markov Models with Gaussian Mixture Model emissions (GMM-

HMM) where the hidden state, machining conditions, take on discrete values 

while the observable states are continuous. As seen in the example in Figure 1, a 

range of temperature values were associated with a discrete observable state 

such as NORMAL (body temperature). Similarly, a range of POD mode values 

modelled by a GMM is associated with a discrete observable state. The number 

of discrete values which the hidden and observable states can take need to be 

specified when training HMM models. The parameters of the HMM model can 

then be estimated from a set of observations using algorithms such as the Baum-

Welch algorithm [9]. The probability that a given sequence of observations was 

generated by a Markov process represented by the trained GMM-HMM model 

can also be obtained using algorithms such as the “forward algorithm” and the 

“backward algorithm” whose details can be found in [9]. All computations 

presented in this paper were implemented using MATLAB R2021a as well as 

using functions contained in an open source HMM library [11].   

 

     The true positive rate (TPR) metric is used to determine the accuracy of 

GMM-HMM models in classifying temperature data [12]. Each GMM-HMM 

model was considered as a binary classifier that predicted whether a series of 
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data was generated by the Markov process represented by the model. Thus, a 

positive prediction (P+) indicated that the data belonged to the class while a 

negative prediction (P-) indicated that the data did not belong to the class. The 

TPR value, presented as a percentage, was obtained by the following equation 

 
 

(2) 

 

3 Experiment setup 
 

The proposed approach for characterising the temperature data of a machine tool 

was tested using experiment data obtained from a three-axis vertical machining 

centre (VMC). The thermal state of the VMC was monitored using thirty-eight 

temperature sensors positioned to measure the temperature and the temperature 

gradient of key points of the VMC. This was done at a sampling frequency of 

10 Hz. The positioning of the sensors was based on engineering knowledge and 

research studies [13], [14]. In each run of the experiment, the VMC was 

repeatedly subjected to the following three different heating cycles using a 

different spindle speed and axis feed rate: 

Cycle 01. Air cutting machining cycle which consisted of motion of the 

spindle and all axes 

Cycle 02. X-axis heating cycle 

Cycle 03. Spindle heating cycle 

     All runs of the experiment included Cycle 01 while Cycle 02 and Cycle 03 

featured in some of the runs. However, only data from Cycle 01 is analysed in 

this paper. Thermally-induced errors were also measured using probing spheres 

though this data was not used in this presentation.  

 

3 Results and discussion 
 

Nine experiment runs (labelled A to I) were performed on different days 

covering a span of two months. Cycle 01 was performed using a feed rate of 

15,000 mm/min and varying spindle speeds (4,500 rpm, 5,000 rpm, 6,000 rpm, 

8,000 rpm, and 9,000 rpm). Cycle 02 and Cycle 03 were also performed using 

different machining parameters but the analysis in this paper on data from Cycle 

01. The temperature data obtained from dataset H is shown in Figure 2.  

     Data from Cycle 01 of datasets A, F, and H were selected as training data for 

the GMM-HMM models. POD analysis was performed using a sliding window 

equivalent to 3.3 minutes (20 samples of data). A one-class GMM-HMM model 

(containing one hidden state) was then trained on the data for each of the 

training datasets. All the models were structured to have four observable states.  

     Classification was performed by passing a sequence of POD modes 

contained in a sliding window to the GMM-HMM models which evaluated the 

probability that the sequence was generated by the Markov process represented 

by the models. The data was then assigned the class of the model with the 
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highest probability. The TPR metric was then used to evaluate the accuracy of 

the classification results. 

 

 
Figure 2: Temperature data and POD analysis results of dataset H 

      

     The results of performing the POD analysis on dataset H are shown in Figure 

2. The POD modes are displayed as a surface plot where the Z-axis represents 

the range of values each dimension of the POD mode can have (from -1 to 1). 

Sustained heating or cooling cycles appear as homogeneous sections in the POD 

modes’ plot. The singular values for first and second POD mode are also shown 

in Figure 2 as a percentage of the total sum of singular values for each time step. 

It is observed that the singular value for the first POD mode accounts for over 

40% of the dispersion in the data which is slightly over double that of the second 

singular value. The exception to this is Cycle 02, during which the total 

dispersion in the temperature data is relatively low. The rest of the singular 

values accounted for less dispersion than the second singular values and are not 

shown. 

     The results obtained from using the trained GMM-HMM models to classify 

Cycle 01 data from test datasets are summarised in Table 1. Sections of data 

from the test datasets are shown in Figure 3. The GMM-HMM models trained 

on datasets A, F, and H were selected to identify one of three ranges of spindle 

speeds: low spindle speeds (4,500 rpm), medium spindle speed (5,000 to 

6,000 rpm), and high spindle speed (8,000 to 9,000 rpm). The results in Table 1 

show that the models correctly classified the test datasets with a TPR values of 
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over 61% except for dataset C. The mean value of the Gaussian mixture values 

learnt by the GMM-HMM models are shown in Figure 4.  

 
Table 1: Summary of results from classifying data using GMM-HMM models 

 
 

 
Figure 3: Section of data from Cycle 01 of the test datasets 

 

 
Figure 4: Features learnt by the GMM-HMM models 
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     Some of the features from different models appear indistinguishable. For 

example, “gmm-hmm A1 feature 3” and “gmm-hmm F1 feature 3” which 

represent cooling cycles are similar in appearance. The exact value of how close 

these features are can be obtained using distance metrics such as variants of the 

cosine distance and the Euclidean distance. Thus, the results could be improved 

further by incorporating application specific modifications. In this case, it can be 

argued that features associated with heating cycles are more informative than 

those associated with cooling cycles and should be weighted appropriately when 

predicting the class. 

 

4 Conclusion 
 

A method of characterising the thermal state of a machine tool using modal 

analysis and Hidden Markov Models with Gaussian Mixture Model emissions 

(GMM-HMM) was presented. Temperature datasets measured at key points of a 

VMC machine tool were recorded under heating cycles with varying spindle 

speeds and feed rates. Proper Orthogonal Decomposition (POD) was used to 

extract features from the temperature data. Three GMM-HMM models were 

trained to learn the sequence of these features and enable classification. The 

models represented classes of machining conditions where the feed rate was 

held constant, but the spindle speed was discretised into three values: low 

(4,500 rpm), medium (6,000 rpm), and high (9,000 rpm) spindle speeds. 

     The GMM-HMM models had True Positive Rate (TPR) values of over 60% 

in accurately predicting the class of all but one of the test datasets. It was 

observed that some learnt features were relatively less informative in the class 

assignment since they were similar in appearance those in other models. An 

example of this were features associated with cooling cycles. Further research is 

being carried out to improve the accuracy and incorporate the presented methods 

in the thermal error modelling workflow. 
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