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Abstract 
 

In addition to computer image processing, mesh smoothing can also be used in 

surface metrology to remove noise from free-form surfaces, which are widely 

represented by triangular meshes. The diffusion equation, also known as the heat 

equation, is generalised and applied to smooth meshes. The Laplacian operator in 

the equation is generalised to the Laplacian-Beltrami operator so the equation can 

be used not only on scalar functions defined in Euclidean space but also on 

functions defined on non-Euclidean manifolds. The triangular meshes are 

piecewise linear approximations of a free-form surface. Therefore, the Laplacian-

Beltrami operator needs to be discrete.  

     There are three kinds of discretisation methods widely used currently: uniform 

graph Laplacian, distance Laplacian and cotangent formula. Their algorithms will 

be briefly introduced and their performance will be compared in four aspects: 

smoothness, shrinkage degree, computation time and edge distortion degree. Tests 

will be conducted on simulated surfaces and measured surfaces. Then, 

recommendations will be given regarding the requirements of measurement and 

characteristics of samples. 

 

1 Introduction 
 

Free-form surfaces can be widely found in nature and in  many engineering 

products. For example, in aerospace, the turbine impellers have free-form 

surfaces. The surface design is critical to engine performance and energy 

efficiency. In the optical field, compared with a traditional optical component, 

free-form optical components have not only the advantages of a larger range of 
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views but also the benefit of lower cost due to simplified structures and flexible 

design [1, 2]. Free-form surfaces are also commonly used in automobiles, such as 

car bodies [3]. In medical science, a free-form artificial joint is much closer to the 

real human joint and thus more adapted to the human body [4]. Overall, free-form 

surfaces have a wide range of applications and great potential for development.  

     However, most surface characterisation methods for traditional Euclidean 

surfaces cannot be used directly on free-form surfaces because of their non-zero 

curvature. To do so, residual surfaces are evaluated instead when the forms are 

not the object of study[5]. Residual surfaces are generated by comparing 

measured mesh surfaces and the reference form surfaces. The curved underlying 

forms are removed, and residuals can be treated as Euclidean surfaces and use 

traditional methods for further characterisation. In additive manufacturing, 

sometimes, the reference form is unknown, and it is time-consuming to find a 

fitted model. Then, a smoothed version of that surface can be seen as the reference 

form. Because free-form surfaces are widely represented by triangular mesh, the 

smoothed free-form surface can be achieved by mesh smoothing. Unlike image 

processing, surface metrology requires a higher level of accuracy and 

precision[6].  
𝜕𝑓(𝑥, 𝑡)

𝜕𝑡
= 𝜆∆𝑓(𝑥, 𝑡) (1) 

     Eq.1 is the diffuison equation, where 𝑡 refers to time, 𝑓(𝑥, 𝑡) is a continuous 

function that changes over time, 𝜆  is the scalar diffusion coefficient,and ∆ 

represents the laplacian operator. When applied in mesh smoothing, the 

continuous function 𝑓(𝑥, 𝑡)  is replaced by sample values at the mesh 

vertices[

𝑓(𝑥1, 𝑡)

𝑓(𝑥2, 𝑡)
…

𝑓(𝑥3, 𝑡)

]. The function is usually chosen as the vertex postion. Time 𝑡 is 

determined by iteration times and sample time. For the sake of concise, in the 

following part, 𝑡 will not be written out. The Laplacian operator ∆ in the equation 

also needs to be discretised to apply to meshes.  

     A discrete Laplacian is defined in Eq.2, where 𝑤𝑖𝑗 is the weight of vertex 𝑥𝑗 

regarding to centre vertex 𝑥𝑖  and vertex 𝑥𝑗  belongs to the its one-ring 

neighbourhood 𝒩(𝑥𝑖), and 𝑤𝑖  is the sum of weight 𝑤𝑖𝑗[7, 8]. There are different 

functions to compute weight 𝑤𝑖𝑗  and the discrete strategy will influence the mesh 

processing afterwards and the surface reconstruction.  

𝛥𝑓(𝑥𝑖) = 𝑤𝑖 ∑ 𝑤𝑖𝑗 (𝑓(𝑥𝑗) − 𝑓(𝑥𝑖))

𝑣𝑗∈𝒩(𝑥𝑖)

(2)
 

     The common types of weight include uniform weight, distance weight and 

cotangent weight. This paper first introduces these three weight functions. Their 

algorithms are reviewed and comparisons are made between the performance of 

Laplacian smoothing using different weights. Based on the evaluation, 

suggestions are given for different applications. 
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2 Discretisation methods 
 

In most circumstances, the continuous Laplace or Laplace-Beltrami can be 

discretised at a mesh vertex 𝑥𝑖  by a linear combination of its one-ring neighbours. 

The weight can be computed in different ways. Three common types of weight 

functions will be introduced in the following sections： uniform weight, distance 

weight and cotangent weight. The flowchart below shows the update process for 

each vertex using three different discretisation methods. 

 

Vertex: xi 
Finding 1-ring 

neighbours:{xj}

Number of 
neighbours:N

Wij=1/N

Euclidean 
distance 

between xii and 
xj: dij

Wij=1/dij

Angles opposite 
edge 

[xi,xj]:αij,βij
Wij=(cot αij+cot βij)/2

Normalisation  f(xi)

Uniform

Distance

Cotangent

Updating xi

 
Figure 1 scheme of three discretisation methods for one vertex 

 

2.1  Uniform weight 

𝛥𝑓(𝑥𝑖) = 𝑤𝑖 ∑
1

𝑁
(𝑓(𝑥𝑗) − 𝑓(𝑥𝑖))

𝑥𝑗∈𝒩(𝑥𝑖)

(3)
 

In Eq.3, 𝑁  is the number of one-ring neighbour vertices, 𝑥𝑖  represents centre 

vertex and vertex 𝑥𝑗  belongs to the its one-ring neighbourhood 𝒩(𝑥𝑖) . The 

uniform Laplacian gives equal weight to every one-ring neighbour vertex. The 

sum of the weight for one vertex is set to 1 for normalisation, so each neighbour’s 

weight is set to  
1

𝑁
 . 

It is simple to compute because it only depends on the number of neighbour 

vertices, but it is not very appropriate for non-uniform meshes. Because it gives 

the same weight to all neighbours, which means all neighbours have the same 

influence on the centre vertex. But actually, some neighbours are closer while 

some are relatively far.  

 

2.2  Distance weight 

𝛥𝑓(𝑥𝑖) = 𝑤𝑖 ∑
1

‖𝑓(𝑥𝑗) − 𝑓(𝑥𝑖)‖
(𝑓(𝑥𝑗) − 𝑓(𝑥𝑖))

𝑥𝑗∈𝒩(𝑥𝑖)

(4)
 

In Eq.4, ‖𝑓(𝑥𝑗) − 𝑓(𝑥𝑖)‖ is the distance between the centre vertex 𝑥𝑖  and its 

neighbours 𝑥𝑗. Distance weight using the distance reciprocal between the vertex 

and its neighbours as the weight.  

     It overcomes the effect of mesh size or density. It will not cause problems in 

curve smoothing, but from a three-dimensional perspective, it causes a shift of the 

centre vertex moving in both tangent plane and normal directions, which causes 

vertex drifting. 
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2.3  Cotangent weight 

 
Figure 2: Illustration of parameters in Eq.5 [9] 

From discrete differential geometry, ∫ ∆𝑓(𝑢)𝑑𝐴 = ∫ ∇𝑓(𝑢)𝑛(𝑢)𝑑𝑠
𝜕𝐴𝐴𝑖

, where 𝐴𝑖 

is the local average domain , 𝜕𝐴 is the boundary of 𝐴𝑖  and 𝑛(𝑢) is the normal 

vector [10]. Combined with vector operations, it can be simplified to  

∫ ∆𝑓(𝑢)𝑑𝐴
𝐴𝑖

=
1

2
∑ (𝑐𝑜𝑡𝛼𝑖𝑗 + 𝑐𝑜𝑡𝛽𝑖𝑗)

𝑥𝑗∈𝒩(𝑥𝑖)

(𝑓(𝑥𝑗) − 𝑓(𝑥𝑖)) (5) 

Thus,

𝛥𝑓(𝑥𝑖) =
1

2𝐴𝑖
∑ (𝑐𝑜𝑡𝛼𝑖𝑗 + 𝑐𝑜𝑡𝛽𝑖𝑗) (𝑓(𝑥𝑗) − 𝑓(𝑥𝑖))𝑥𝑗∈𝒩(𝑥𝑖)

(6) 

It considers not only the spatial distance but also geometric information. The 

problem is that the cotangent value will become negative when the angle is larger 

than 𝜋/2
𝜋

2
 . Thus, the weight will be negative when 𝛼𝑖𝑗 + 𝛽𝑖𝑗  > 𝜋 .Usually, the 

absolute value of the cotangent will be used instead, but it indicates the triangles 

are flipped.  

 

3 Error Metrics 
 

To get a smoothed version of the mesh surface, the first requirement is 

smoothness. The smoother the surface, the more surface textures will remain in 

the residual surface, and the more accurate form evaluation can usually be 

achieved. But if the smoothed surface is shrinkage, which means the curvature of 

the reference form is wrong, the residual surface will deviate from the actual data. 

Therefore, the degree of shrinkage is also an important performance indicator of 

the results. Last, for edge distortion, normally, it is possible to intercept the middle 

segment of the surface for analysis. But this is not a good way to handle it when 

the amount of data is small or the measured object is tiny. Without boundary 

distortion, less test data will be discarded. 

     The performances are evaluated from smoothness, shrinkage effect and edge 

preservation. The edge-preserving performance can be evaluated by comparing 

visually in three-dimension or by taking a cross-sectional profile comparison. 

Apart from edge-preserving performance, smoothness and shrinkage comparison 

is evaluated by different error metrics. 
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3.1 Metrics for evaluating the smoothness 

 

There are two kinds of error metrics to evaluate smoothness. The first kind is 

vertex-based, which measures the distance between vertex 𝑣0 and a triangle of the 

reference mesh 𝑀  which is closest to vertex 𝑣0 . In this report, the simulated 

original mesh is treated as a reference mesh. The original mesh is then added noise 

and smoothed by different methods. The vertex distance between the smoothed 

mesh and the reference mesh reflects how approximate is the estimation 

(smoothed mesh) to the reference mesh. The root mean square (RMS) of the 

distance is chosen as the error metric to estimate the imperfection of the fit to the 

reference data. 

     The other kind of error metric is normal-based. These metrics measure 

deviations between the corresponding normals of two meshes 𝑀 and 𝑀0. Because 

of this, it is sensitive to mesh degradation at sharp features and highly curved 

regions[11]. 

 

3.2 Metrics for evaluating shrinkage effect  

 

There are two ways to check the shrinkage. One is aligning two meshes and then 

to compare the differences. In this paper, we will use the software CloudCompare 

to show the comparison. 

     For closure surfaces, it can calculate the whole volume before and after mesh 

smoothing. The shrinkage effect can be qualified by comparing the original mesh 

volume with the volume of the smoothed mesh. 

     For a cylinder or sphere-based surface, the least square circle or sphere fitting 

can be used to fit to the mesh surfaces before and after smoothing. Radius is been 

calculated and to evaluate the shrinkage effect.  

 

4 Result 
 

Three methods are implemented for every example. A simulated F-lens surface is 

used to evaluate their performance on non-Euclidean surfaces. A simulated 

sphere, which radius is unit one, is used to evaluate most on how much they shrink 

and a simulated block surface is used to test the edge preservation performance. 

The original simulated surfaces are ideal smooth meshes. They are remeshed in 

MeshLab to achieve enough vertex points. Then, random noises are added to in 

the direction of vertex normal. The measurement surface is a golf ball surface, 

which underlying form is a sphere. The details of these surfaces are shown in 

Table 1. 

The 𝜆  in the diffusion equation is set to 0.8. It controls the smooth speed, and 

it should be set between 0 and 1. The bigger it is, the smoother result will be got 

with the same iterations numbers. The iteration number is set from 10 to 100, with 

10 as the step size. Some examples also are tested for 200 iteration times. Most 

smooth results will become stable after 100 iterations. 
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Table 1: Information about tested surfaces 

Name Number of vertices Number of faces 

F-lens surface 2244 4288 

Sphere 40962 81920 

Block 8771 17550 

Golf ball 78721 157438 

 

4.1  F-lens surface 

 

 

 

 
Figure 3 : Smoothing results of F-lens surface using different weight functions 

Figure 3 shows the smooth results of the F-lense surface using three different 

weights and iterated 10 to 100 times with 10 step size. Horizontally, the 

smoothness looks very close for the three different weights, but the uniform 

weight result has distortions at the boundary, especially when the iteration number 

becomes bigger. Vertically, the smoothing effect becomes more and more obvious 

as the number of iterations increases, but they shrink as well. 

     From Figure 4a, we can see cotangent weight results are the best-fitted 

approximation of the original mesh. Distance weight results are close, and 

uniform weight results are far. The gap becomes even bigger when the iteration 

number increases. However, the cotangent weight function needs much more time 

to compute, almost 20 times more than the other two methods(Figure 4b). 

     From Figure 5a, we can see the edge distortion and shrinkage effect. The 

problems become severe as the iteration increases. As can be seen in Figure 5b, 

all these methods have the shrinkage problem, and cotangent weight has the best 

performance regarding edge preserving, while uniform weight is the worst. 
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(a) (b) 

Figure 4: (a):Root mean square value of the distance from smoothed free-form 

surfaces to reference free-form surface;(b): Computation time 

 
 

(a) (b) 

Figure 5: (a):Mesh display of the smoothed free-form meshes usinguniform 

weight;(b): Mesh display of the smoothed meshes for 200 iterations 

 

4.2  Unit sphere surface 

 

 

 
Figure 6 : Smoothed results of a unit sphere 

Figure 6 shows the smooth results of the simulated unit sphere surface. They all 

achieved a smoothed version of the mesh after 50 iterations. From Figure 7a, the 

RMS values of the distance between the original mesh and smoothed meshes 
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steadily grow. Among these three weight functions, the line shows that cotangent 

weight is also best for approximating sphere-shape underlying form. But the 

computation time of the cotangent weight function becomes even higher after 60 

iterations, almost 200 times that of the other two methods(Figure 7c). 

     In Figure 7b, the radius of uniform weight results drops when the iteration 

number increases, which means it shrinkages and becomes more significant as the 

iteration number increases. The results of the distance weight function and 

cotangent weight function has similar radius regardless of the iteration number, 

so as the root mean square values of distance.  

Figure 7: (a):Root mean square value of the distance between reference mesh 

and smoothed meshes;(b) Radius of fitted spheres;(c): Computation time 
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(b)  
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4.3  Block surface 

 

Figure 8 illustrates the smoothed block surfaces using three weight functions. 

Three methods can achieve a smooth result after 10 iterations. However, from the 

second row, we can see that the edges are blurring and tend to shrink to the object 

centre. This phenomenon is more obvious after 100 iterations. In Figure 9a, the 

distance weight function line and cotangent weight function line almost overlap, 

indicating their smoothness performances are very similar. But cotangent weight 

is better in avoiding the shrinkage effect because the volumes of its results 

decrease slower than the distance weight in Figure 9b. However, higher accuracy 

comes at the expense of efficiency. Its computation time is almost 10 times than 

other two methods. 

 

 

 

 
Figure 8 Smoothed results of simulated block 
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(a) 

 
(b) 

 
(c) 

 

Figure 9: (a):RMS values of distances between smoothed mesh and original 

mesh;(b): Total volumes of smoothed blocks;(c): Computation time 
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4.4  Golf ball surface 

 

The golf ball surface is a measured surface so the reference form is  unknown in 

advance. Therefore, we did not calculate the RMS value for it. From Figure 10 

we can see that after 100 iterations, the surface of the golf ball has been smoothed 

to a smooth sphere with three weight functions though the second and third 

methods still have one or two tinny bumps. We increased the iteration number to 

2000 times and these features still exist. The reason needs further investigation. 

    From Figure 11, the distance weight results have the biggest radius while the 

uniform weight is the smallest. The distance weight computes as similar speed as 

uniform weight while the cotangent weight is much slower. 

 

 

 
Figure 10: Smoothed results of a golf ball surface 
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(a) (b) 

Figure 11: (a):Radius of the fitted sphere for different weight function 

smoothing results;(b): Computation time 

 

5 Conclusion and Future Work 
 

We compared the smoothed performance using three different weight functions 

to discretise the Laplacian-Belatrami operator. The result shows that they all can 

achieve decent smoothness after  100 iterations, and they both cause edge blurring 

if the iteration number is more than 50. The uniform weight function computes 

fast and only needs the number of one-ring neighbours. However, its shrinkage 

effect is significant. The cotangent weight function has the best performance in 

most aspects, but it needs much more time to compute. The distance weight 

function is a good compromise solution between them because its smoothness 

degree is close to cotangent weight, but its computation time is much shorter, 

similar to uniform weight. Therefore, the distance weight function is 

recommended to discretise the Laplacian-Beltrami operator in mesh smoothing. 

If higher accuracy is needed, use cotangent weight instead and while time is very 

limited, uniform weight can also be used but the accuracy is not guaranteed.  

The future work includes comparing using other weight functions. The test should 

also be tested on more measurement surfaces. The question that if it is possible to 

find a weight function that does not blur edges also needs further investigation. 
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