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Abstract 
 
Monitoring tool wear is essential for advanced manufacturing systems and intelligent production. The ability to assess tool condition 
in real time plays a key role in minimizing costs, improving product quality, reducing machine downtimes, and optimizing 
manufacturing processes. However, accurate tool monitoring in real time remains a significant challenge in industrial applications 
due to low efficiency of signal processing methods and poor model generalization for machining processes. While tool condition 
monitoring techniques have been extensively developed for high chip load operations such as roughing, their effectiveness in fine 
finishing operations remains a challenge. Lower cutting forces and subtler tool wear make traditional monitoring approaches less 
reliable. In this work, a power-based monitoring system is designed for fine finishing milling operations. Side milling tests are 
conducted under cutting conditions of low engagement, while indirect monitoring of the cutting process is performed through power 
signal acquisition. The acquired signal undergoes necessary pre-processing, followed by the extraction of key features related to the 
tool’s wear state. The evolution of these extracted features is analysed and compared with direct tool wear measurements obtained 
through an on-machine camera-based system. A comparative approach is established to investigate the correlation between spindle 
power variations and tool wear in fine finishing operations.  
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1. Introduction 

Conventional machining operations, such as turning, milling, 
grinding, and drilling, are indispensable in the modern 
manufacturing industry. Monitoring the state of cutting tools 
used in machining processes is essential, as 3-12% of the 
production cost is closely related to the condition of cutting tools 
and their replacement. Cutting tool wear not only increases 
production costs but also contributes to machine downtime, 
cutting tool failures (wear and breakage) typically represent 
around 20% of a machine tool's downtime [1]. Furthermore, an 
accurate and reliable tool condition monitoring (TCM) system 
could result in cutting speed increases of 10–50% [2].  

Real-time tool wear monitoring, thus performed during the 
cutting process, can only be achieved through indirect means, by 
inferring the wear condition from signals correlated to the wear 
process. Furthermore, an industrially viable tool wear condition 
solution must be non-invasive, to maximize efficiency and 
maintain productivity. Indirect monitoring for high-chip load 
operations is well established, but monitoring for finishing 
operations is challenging due to the small acceptable wear levels 
and the related small variation of the load. Some of the 
quantities measurable in-process representing the tool 
condition are acoustic emissions (AE) [3], cutting forces [4], 
vibration signals [5], spindle torque, spindle power [6], and 
thermal imaging [7]. 

Some studies show that power sensors could replace the 
cutting force sensors (which are usually invasive) for industrial 
tool wear monitoring [8]. In power-based monitoring, the load-
related spindle power in finishing operations is a small fraction 
of the power used [9], and wear creates small variations in the 

load-related fraction. In addition, signal to noise ratio in finishing 
operations is very low. Apart from that, milling operations are 
considerably more difficult to monitor than operations with 
continuous engagement, because of the multiple teeth of the 
cutting tool and variable chip thickness. 

In this paper spindle power based TCM in fine finishing 
operations has been demonstrated by implementing high 
resolution spindle power monitoring and signal preprocessing   
techniques. Relevant features are extracted from the signal, and 
the effectiveness of the method is validated through comparison 
with direct wear measurements. 

2. Experimental setup 

Figure 1 shows the schematic of the experimental setup for 
indirect tool wear monitoring. The workpiece is mounted on a 
vice on top of a dynamometer on a machine tool (FANUC 
ROBODRILL α-D21LiB5adv). The data acquisition for power 
signal is acquired using a current sensor (Montronix PS200-NG) 
which transmits an analogue output signal to the acquisition 
devices (NI DAQ) where the signal is discretized. The machine 
tool sends a 24 V signal (a pulse of 24 V and 1 s duration) to the 
DAQ. The trigger signal of 24V goes through the voltage divider 
and initiates the data acquisition process. The acquired signal is 
converted into power by multiplying with the scaling factor.  

The camera-based system (CBS) is an optical system mounted 
on the machine tool. The CBS is used as a tool presetting system 
for measuring the cutting tool geometry in machining 
operations. The optical system comprises of a camera and an 
illumination unit and captures the images of the rotating milling 
tool at different rotating angles. This information is later post-
processed for radial wear estimation by comparing against the 
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reference model of a new clean tool. Figure 2 shows an image of 
the CBS. Force data acquisition was performed simultaneously 
with power data acquisition but not included in this work. 

 

 
 
Figure 1 Experimental setup with the workpiece mounted on a 
dynamometer and accessories (signal amplifier, data acquisition system 
(DAQ)). 

 

 
 

Figure 2 A photograph of the camera-based system with Ø3 mm radius 
end mill mounted in the spindle of the machine tool. 

The cutting tool used is Ø3 mm radius end mill (MHDH445R by 
NS Tool) with a helix angle of 45˚. It has four flutes and a nose 
radius of 0.2 mm. The rake angle on the cylindrical part of the 
cutting tool is -20˚. Figure 3 shows the cutting tool-workpiece 
engagement in the side milling operation. The workpiece 
material was a chromium-molybdenum-vanadium hardened 
steel (AISI H13 hot-work steel, classified according to NADCA 
#207 Grade B) with hardness of 48-50 HRC. Dedicated 
workpieces with grooves of 1 mm depth were prepared to 
restrict the tool engagement on the cylindrical part of the tool. 

Side milling tests have been performed under cutting 
conditions of low engagement similar to fine finishing 
operations and by engaging the 1 mm region on the cylindrical 
region of the cutting tool. The milling process parameters are 

listed in Table 1. The milling parameters were kept constant for 
all four cutting tools used in the tests.   
 

 
 
Figure 3 Tool-workpiece engagement. 

Table 1. Cutting conditions for the side milling operation. 

Cutting conditions 

Spindle speed 6366 RPM 

Axial depth of cut 1 mm 

Radial depth of cut 0.05 mm 

Cutting speed 60 m/min 

Table feed per minute 480 mm/min 

Feed per tooth 0.019 mm/tooth 

Sampling rate (for acquisition) 100 kHz 

3. Data processing      

The data related to power is processed and the most 
important features are extracted. The power signal in the 
engaged zone is normalized with respect to the power signal in 
the non-engaged zone.  Figure 4 shows the zone in which the 
tool is engaged (orange curve) and the zone in which the tool is 
not engaged (blue curve).  

 
 
Figure 4 Power versus time graph showing the engaged and non-
engaged zones of the power signal. 

Two features are extracted from the power signal; the mean 
power signal and the amplitude of the wave of the signal [10]. 
The baseline of the power signal varies with time due to various 
factors such as spindle temperature, and spindle lubrication. In 
order to test the validity of the feature extraction method, the 
analysis of the selected features is performed by comparing 
them with the same feature from the baseline power signal. The 
features are calculated for the engaged zone and the non-
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engaged zone, and then the features of the engaged zone are 
normalized with respect to the non-engaged zone to obtain the 
signal feature that is used as a measurement parameter. The 
representation of the normalized moving average of the power 
with respect to the power signal is shown in Figure 5, showing 
the 4 machined zones (4 straight segments of tool path). 

As for the power amplitude, an algorithm is implemented to 
detect the maximum and minimum peaks of the power signal, 
and these peaks are used to calculate the average amplitude, 
and depicted in Figure 6. 

 
Figure 5 Power versus time graph showing the moving average of the 
power signal. 

 
 

Figure 6 Power versus time graph showing peak selection (green 
circles) on the acquired data and the zoomed-in view. The two datasets 
with selected peaks correspond to the two segments of the acquired 
signal. 

4. Results 

4.1. Results for extracted features 
The progression of the extracted features (normalized mean 
power and the normalized power amplitude) with respect to the 
cutting length for four cutting tools is analysed. Figure 7 shows 
the evolution of the normalized mean power with the cutting 
length for the four tools being tested. The normalized mean 
power shows a general upward trend, although some data 
points show dispersion. 

The progression of the normalized power amplitude feature 
with cutting length is shown in Figure 8. In this case, the trend of 
the extracted feature is ascending and depicting a relatively 
lower dispersion as compared to the other extracted feature 
from power data (see Figure 7).  
 

 
 
 Figure 7 Normalized mean power evolution vs cutting length. 

 
 
Figure 8 Normalized power amplitude evolution vs cutting length. 

4.2. Comparison with direct measurement 
The results obtained with indirect monitoring are compared 

with the average radial wear values obtained with CBS. The 
average radial wear for the CBS is computed by taking an 
average on the difference of the new and the worn tool profiles 
in the engaged 1 mm zone. Results obtained for one of the tools 
(labelled as T16) are shown in Figure 9. A clear correlation is seen 
between power amplitude and average radial wear. As can be 
seen, high resolution power measurement enables wear 
monitoring even for very low radial wear values of only few µm. 

 
 

Figure 9 Relation between normalized power amplitude and radial 
wear for T16. 



  

 

Figure 10 shows the normalized power amplitude for all tools 
against their respective average radial wear. Considering that 
the wear behaviour is roughly linear over the explored range 
(steady state wear rate), a linear fit with all the data points is 
used. The black line represents the general trend, and the dotted 
black lines are plotted with a 95% confidence interval. 

 

 
 

Figure 10 Relation between normalized power amplitude and average 
radial wear. 

4.3. Discussion 
The combination of a high resolution power measurement 

device and data processing algorithms has shown the ability to 
correctly reveal the wear trend of small cutting tools in a light 
machining operation characterized by a small uncut chip 
thickness and chip cross section, representative of finishing 
machining operations. The system was tested for cutting lengths 
generating very small amounts of wear, with maximum 
observed radial wear of 4.5 µm. A clear relationship is seen 
between the extracted features and radial tool wear as 
measured by the CBS in the very low wear range, demonstrating 
the suitable sensitivity of the system. Figure 10 indicates that all 
the data points obtained follow a similar trend and they all 
reside within an approximate range of 4% of the normalized 
value of the power amplitude feature.  

5. Conclusions 

In this work, we have developed an indirect tool wear 
monitoring system for milling finishing operations based on 
spindle power. The highly sensitive system can detect small 
changes in wear values using power related features. However, 
the definition of the extracted features can be optimised to 
increase the precision of the monitoring system.  

Future work will focus on identifying signal features yielding 
improved results in terms of robustness towards the estimation 
of radial wear. Frequency domain analysis techniques, machine 
learning algorithms, or deep learning methods will be explored 
to extract additional information from the signals obtained 
during machining. The robustness of the approach will be 
further validated in various engagement conditions. 
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