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Abstract 
     In plastic injection molding, efficient clamping force plays a critical role in maintaining product quality, minimizing energy 
consumption, and extending the lifespan of molds. Traditional methods often rely on empirical rules or fixed maximum force settings, 
which can lead to inefficiencies and higher costs. Therefore, a reliable prediction model can be a solution to optimize the injection 
molding process. Such a model has the ability to balance defect reduction, operational efficiency, and equipment durability. It also 
can correlate the complex interactions between process parameters and their associated uncertainties. 
    This study investigates the injection molding of plastic bushing (size 63 mm) as the case study. A Plackett-Burman Design of 
Experiments (DOE) with two levels for six key factors (melt temperature, cooling time, packing time, holding pressure, injection 
pressure, and injection time) is used as the screening step. This method offered 36 experiments and after the analysis, holding 
pressure showed almost no impact on the maximum clamping force, leading to its exclusion from further analysis. Then, a Central 
Composite Design (CCD) was employed for the remaining five factors, considering five levels for each, resulting in 32 experiments. 
Finally, a Naïve Bayes algorithm was trained to predict the results of the process, and its uncertainty was evaluated using the 
bootstrap sampling method.  The findings of this study provide a clear understanding of developing high-quality prediction models 
with low uncertainty in prediction which can lead to optimizing the injection molding parameters. 
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1.  Introduction   

 With a continuous increase in demand for plastic 
components, the need for higher-quality and cost-effective 
production is greater than ever. Emerging new technologies 
such as artificial intelligence (AI) have helped achieve this goal 
much more easily, as demonstrated in, e.g., [1]. Many studies 
have employed machine learning models to predict different 
quality attributes in the injection molding process such as 
warpage [2], shrinkage [3], weld lines [4], and blush [5]. Some 
other studies also tried to optimize multiple factors at the same 
time [6]. 

 Even after implementing all these advanced prediction 
models, there is a lack of uncertainty analysis for the machine 
learning prediction models due to their black-box nature [7]. 
There are some grey-box or white-box machine learning 
prediction algorithms in the literature, including decision trees, 
logistic regression, random forest, Naïve Bayes, etc. Since these 
grey-box and white-box algorithms are interpretable (in contrary 
to the usual black-box algorithms), they provide mathematical 
prediction equations that are suitable for conducting 
uncertainty evaluations [8]. 

 This study focuses on implementing uncertainty analysis on 
the Naïve Bayes algorithm to evaluate the clamping force of the 
injection molding process. The bootstrap technique was 
adopted by considering 100 resamplings to generate more 
prediction equations in order to evaluate the uncertainty of the 
coefficients in the equation [9]. 

2. Methods      

    To predict the Maximum Required Clamping Force in the 
injection molding process, a Placket-Burman DOE was employed 
as the screening step to evaluate the effectiveness of the six 
factors of melt temperature, cooling time, packing time, holding 
pressure, injection pressure, and injection time. After doing FEM 
simulations using Autodesk Moldflow and analyzing the results, 
it was revealed that all the factors except holding pressure affect 
the maximum clamping force. Then the analysis was continued 
with the significative factors using a CCD design of experiments 
which recommended 32 experiments to be executed. After the 
simulations, we employed a Naïve Bayes algorithm. It is a simple 
yet powerful machine learning model which is based on Bayes' 
Theorem based on the assumption that the predictors are 
independent of each other. Naïve Bayes (as a white-box 
algorithm) is known for being computationally efficient and 
interpretable. Unlike complex black-box models such as neural 
networks, Naïve Bayes derivates transparent predictions from 
straightforward probabilistic calculations. 
    This study aims at managing uncertainty in predictions. Naïve 
Bayes naturally provides corresponding probabilities, which 
indicate the model’s confidence in its predictions. Our dataset 
consisted of 68 samples, which were used to train the Naïve 
Bayes model. The following equation is the result of the trained 
model: 
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G = (-1702,371) + (7.924)a + (-0.770)b + (-0.692)c + (0.226)d + 
(3.662)e + (-17.420)f 
 
Here, G represents the Maximum Required Clamping Force, 
while the variables a, b, c, d, e, and f correspond to the melt 
temperature, cooling time, packing time, holding pressure, 
injection pressure, and injection time, respectively. See Table 1 
for further details. 
    To better understand the uncertainty in the model's 
predictions, we applied bootstrap sampling. Bootstrap operates 
by generating multiple resampled datasets from the original 
data, which allows for investigating how model parameters vary 
across different iterations and how stable the results are. A 
series of 100 bootstrapped sample datasets were created, each 
containing 68 samples generated by resampling the original data 
with replacement. For each of these datasets, the Naïve Bayes 
model was retrained, producing 100 unique prediction 
equations.  
    
2.1. Geometry and the material 

 
The part under study is a plastic bushing with a size of 63 mm, 

used in the pipes and fitting industry. The mold has two cavities 
and the validation tests are conducted experimentally. A 2D and 
3D view of the part can be observed in Fig.1 and Fig.2, 
respectively. The material used to manufacture the component 
and for the corresponding simulations was UPVC (Unplasticized 
Polyvinyl Chloride) Benvic IR705. 

 
Figure 1. 2D view of the cavities and the runner system 

 

 
Figure 2. 3D view of the bushing size 63 mm [5] 

3. Results      

    Since each of the 100 generated models was trained on a 
slightly different dataset, the coefficients of the resulting 
equations varied slightly as well. This variability is key to 
evaluating the standard deviation of the coefficients and 
evaluating the uncertainty of the model. Table 1 represents the 
uncertainty of the variables and the coefficients of the 
mathematical model. 
Based on Table 1, C1, C2, C4, and C5 are the most influential 
coefficients on the variance of the model, consequently 
influencing the expanded uncertainty. The expanded 
uncertainty for clamping force is 1.2E2 tonnes which compared 
to the 1.56E2 tonnes predicted by the equation, shows a 76.3% 
relative interval. 
 

Table 1. Uncertainty evaluation of the mathematical model 

Symbol Value uj
2(y) 

[t2] 

a  [°C] 193.00 5.2E-4 

b [s] 22.50 4.9E-6 

c [s] 6.50 4.0E-6 

d [MPa] 64.70 4.3E-7 

e [MPa] 130.00 1.1E-4 

f [s] 8.00 2.5E-3 

C0 [t] -1702.37 4.8E-2 

C1 [t/°C] 7.92 1.3E3 

C2 [t/s] -0.77 8.5E1 

C3 [t/s] -0.69 5.8 

C4 [t/MPa] 0.23 1.4E2 

C5 [t/MPa] 3.66 2.1E3 

C6 [t/s] -17.42 5.0 

eps [t] 0.00 5.8E-2 
   

G = Max clamping  force [t] 1,56E2   
   

 Variance of G [t2] 3.6E3 

 Expanded uncertainty 
U(G) [t] 

1.2E2  

 Relative expanded 
uncertainty 

76.3% 

5. Conclusion      

Based on the results, it is clear that applying the bootstrap 
sampling method can improve the model’s robustness. By 
generating 100 bootstrapped samples of the initial model, the 
variability contribution of the coefficients and variables can be 
evaluated and compared. This leads to a better understanding 
of the reliability of the model. 

The combined expanded uncertainty of the model includes all 
the uncertainties related to the coefficients and the variables. 
While the coefficients C1, C2, C4, and C5 show the highest 
influence on the uncertainty, the combined relative expanded 
uncertainty of the model is 76.3%. This relatively high level of 
uncertainty indicates that further optimization could be applied, 
and will be the objective in future work. As a solution to improve 
(i.e., to decrease) the uncertainty levels, the number of 
bootstrapped samples can be increased. We can go for 1000 and 
10000 bootstrapped samples in future studies to test how 
sampling size can affect the uncertainty of the prediction model. 
Additionally, employing the method on a wider dataset might 
show further and improved capabilities of the method. 
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