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Abstract 
Data-driven methods have emerged as a pivotal area of system identification and among these the SINDy-PI (parallel implicit sparse 
identification of nonlinear dynamics) algorithm stands out for its ability to identify underlying parameters in equations for dynamic 
systems from measurement data. This method benefits from the capacity to deal with sparse nonlinear dynamical systems and 
robustness to noisy data. In this work, a dynamic model for a 2 Degree of Freedom, 5 bar linkage, system with two actuated inputs 
based on equations is developed in Matlab; by using SINDy-PI, unknown parameters of this model are estimated from simulated data 
with low RMSE(root mean square error) of 0.0501 to simulated results; The case demonstrates the feasibility of applying SINDy-PI on 
a 2DoF mechanical system and results indicate substantial improvements in noice robustness. 
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1. Introduction   

In the rapidly evolving field of robotics, understanding and 
predicting the dynamic behaviour of complex mechanical 
systems presents a significant challenge. To date, contributions 
have been done in the study of robot dynamics with several 
ideas proposed to simplify dynamic models using numerical or 
symbolical approaches such as applying least square method to 
estimate dynamic parameters [1-2]. These methods mostly lead 
to reduced or approximate dynamic equations, but for industrial 
or research purposes, an accurate and comprehensive dynamic 
model can provide a better precision in prediction, estimation 
and control. Many attempts have been made to autonomously 
extract physical laws from data and with the advancement of 
machine learning, this approach has become more feasible [3]. 
Methods involve extracting governing equations from either: (1) 
probabilistic machine learning (Gaussian process) [4], (2) 
physics-informed neural network framework [5], (3) physics-
informed generative adversarial networks [6]. However, one of 
the issues is that in most cases, machine-learning methods are 
black boxes that result in a lack of traceable insight into how the 
equations are derived and used to obtain results. 

In a recent work from Brunton et. al. [7-8], a data-driven 
method, sparse identification of nonlinear dynamics (SINDy), 
was proposed to generate nonlinear dynamics from the 
measurement data. SINDy requires a certain level of prior 
knowledge regarding the specified system, upon which the 
reconstructed formulas are predicted. This approach not only 
inherits the robustness and stability characteristic of the 
traditional least square method, but also embodies a degree of 
flexibility associated with machine learning methods. 

SINDy has emerged as an effective approach to find the 
underlying structure of dynamics and therefore, many variants 
were proposed to broaden its applications: SINDy with control 
[8], SINDy-PDE [9], Lagrangian-SINDy [10], SINDy-PI [11]. These 

algorithms extended the original SINDy with partial differential 
equations, implicit differential equations and differential 
equations from noise. Among these, SINDy-PI was developed to 
address the shortcomings of original SINDy in handling rational 
non-linearity [ref].  

This paper takes advantages of the computing power of the 
SINDy-PI method to develop a novel and efficient parametric 
identification approach on a two degree of freedom (2DoF) five-
bar linkage mechanism. Firstly, the generalised kinematic and 
dynamic equations of the system are presented; then, based on 
these equations, an open-loop simulated model is developed 
using Matlab. Finally, the resulting simulated data is imported 
into SINDy-PI algorithm to derive dynamic equations and their 
accuracy evaluated. 

2. 2-DOF linkage mechanism modelling 

The 2DoF five-bar linkage mechanism,  shown in Figure 1,  is a 
less complex nonlinear system compared to robotic arms, 
making it a suitable platform for initial validation of the SINDy-
PI algorithm. Future work will evaluate the use of SINDy-PI on a 
6 DOF compliant robot (a Universal Robot UR5). To develop a 
simulation the necessary modelling includes basic kinematics 
and dynamic equations.  
2.1. Forward and Inverse kinematics    

The simplified geometry of the mechanism developed in this 
paper is shown in Figure 1. Four bars with length  L1, L2, L3, L4 are 
linked by five joints (L0 considered as base) and two torque 
inputs are located at points A and B to provide actuation for 
controlling the movement of endpoint 𝑬 (with coordinates 𝐸𝑥 

and 𝐸𝑦). 𝜃1, 𝜃2, 𝜃3, 𝜃4  represents four joint angles with values, 

respectively.  As an initial test, the mass of all four linkages are 
set to 1 Kg, the length of all four linkages are set to one meter, 
while the mass and friction from the joints are neglected.  
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Forward kinematics, which computes the position of end-
effector based on the known geometry and joint parameters 
(angles) is applied As:  

 
𝐸𝑥 =  𝐿1𝑐𝑜𝑠𝜃1 + 𝐿2𝑐𝑜𝑠𝜃2   

𝐸𝑦 =  𝐿1𝑠𝑖𝑛𝜃1 + 𝐿2𝑠𝑖𝑛𝜃2 .                                                             (1) 

 

 
Figure 1. Diagram of 2-DOF linkage mechanism  

  
Modifying Equation (1) with parameters for the right hand side 

(L3, L4, θ3, θ4) would result in two 2-bar linkages, that do not 
necessarily connect at point E. To link the two elements together 
geometric constraints should be considered [12]: 

 
𝑓1  =  𝐿1𝑐𝑜𝑠𝜃1  +  𝐿2𝑐𝑜𝑠𝜃2  − 𝐿3𝑐𝑜𝑠𝜃3  − 𝐿4𝑐𝑜𝑠𝜃4 −  𝐿0 =  0          

(2)      
 
𝑓2  = 𝑠𝑖𝑛𝜃1  +  𝐿2𝑠𝑖𝑛𝜃2  − 𝐿3𝑠𝑖𝑛𝜃3  − 𝐿4𝑠𝑖𝑛𝜃4  =  0                     (3) 
 
Take the second derivative of Equations (2) and (3) with respect 

to time: 
𝑑2𝑓1

𝑑𝑡2
= − 𝐿1𝜃1̈𝑠𝑖𝑛𝜃1 −  𝐿1𝜃1̇

2
𝑐𝑜𝑠𝜃1 −  𝐿2𝜃2̈𝑠𝑖𝑛𝜃2 −

 𝐿2𝜃2̇
2

𝑐𝑜𝑠𝜃2 +  𝐿3𝜃3̈𝑠𝑖𝑛𝜃3 +  𝐿3𝜃3̇
2

𝑐𝑜𝑠𝜃3 +  𝐿4𝜃4̈𝑠𝑖𝑛𝜃4 +

 𝐿4𝜃4̇
2

𝑐𝑜𝑠𝜃4                                                                                                          (4) 
𝑑2𝑓2

𝑑𝑡2
=  𝐿1𝜃1̈𝑐𝑜𝑠𝜃1 −  𝐿1𝜃1̇

2
𝑠𝑖𝑛𝜃1 +  𝐿2𝜃2̈𝑐𝑜𝑠𝜃2 −

 𝐿2𝜃2̇
2

𝑠𝑖𝑛𝜃2 −  𝐿3𝜃3̈𝑐𝑜𝑠𝜃3 +  𝐿3𝜃3̇
2

𝑠𝑖𝑛𝜃3 −  𝐿4𝜃4̈𝑐𝑜𝑠𝜃4 +

 𝐿4𝜃4̇
2

𝑠𝑖𝑛𝜃4  .                                                                                        (5) 
 
Since θ2 and  θ3 are passive joints with no direct torque inputs, 

they can then be expressed using active angles of the system  𝜃1 
and 𝜃4.  Based on a trigonometry method the relation is: 

𝜃3  =  2𝑡𝑎𝑛−1 (
𝐴 ±√𝐴2+𝐵2−𝐶2

𝐵−𝐶
)                                                        (6) 

where: 
𝐴 =  2𝐿3𝐿4𝑠𝑖𝑛𝜃4  − 2𝐿1𝐿3𝑠𝑖𝑛𝜃1   
𝐵 =  2𝐿3𝐿0  − 2𝐿1𝐿3𝑐𝑜𝑠𝜃1  +  2𝐿3𝐿4𝑐𝑜𝑠𝜃4   
𝐶 =  𝐿1

2 − 𝐿2
2 + 𝐿3

2 + 𝐿3
2 + 𝐿0

2 − 𝐿1𝐿4𝑠𝑖𝑛𝜃1𝑠𝑖𝑛𝜃4 −
2𝐿1𝐿5𝑐𝑜𝑠𝜃1  − 2𝐿4𝐿0𝑐𝑜𝑠𝜃4  − 2𝐿1𝐿4𝑐𝑜𝑠𝜃1𝑐𝑜𝑠𝜃4                        

 

𝜃2  = 𝑠𝑖𝑛−1(
𝐿3𝑠𝑖𝑛𝜃3+𝐿4𝑠𝑖𝑛𝜃4−𝐿1𝑠𝑖𝑛𝜃1

𝐿2
)                                             (7) 

2.2. Dynamics overview     
The standard governing dynamic equation of a system derived 

from Lagrangian formulation is given as follow: 
 

𝑴(𝜃)𝜃̈ + 𝑽(𝜃, 𝜃̇) + 𝒈(𝜃) = 𝒖                                   

(8) 

where 𝑴 , 𝑽 , 𝒈  and 𝒖 denote the inertia, centrifugal and 
Coriolis force, gravitational force and external force matrix. In 

the case of this 2DoF system,  𝜃, 𝜃̇  and 𝜃̈  refer to joint angle 
displacement, velocity and acceleration, respectively. 

Since the 2DoF system works horizontally, the gravitational 
force (g) is neglected, leaving just the first two dominating parts 
 𝑴  and 𝑽 . Considering that this system has constraints of 
𝒇 = (𝑓1, 𝑓2) (equation(2) and (3)), this results in the following 
dynamic equation [13]: 

𝑴(𝜃)𝜃̈ + 𝑽(𝜃, 𝜃̇) = 𝒖 + ∑ 𝝀𝑖
𝝏𝒇𝒊

𝜃𝒋
𝒊  .                                            (9) 

𝝀𝑖  (𝒊 = 𝟏, 𝟐)  is then a vector for Lagrange multipliers. 
Combining Equation (9) with (4) and (5),  six equations with six 
unknown variables (including joint angles 𝜃1, 𝜃2, 𝜃3, 𝜃4  and 
Lagrange multipliers 𝜆1 and 𝜆2 ) are considered and the 
equations of motion for 2-DOF linkage mechanism with 
constraints are computed. Based on these equations, an open 
loop Matlab simulation is built and data is recorded for use in 
the SINDy-PI algorithm. 

The resulting equations of motion can be found in the 
following repository: 

https://github.com/Minrui-uon/2DOF-system-with-constraints. 
 
3. SINDy-PI Overview      

The original SINDy algorithm identifies the nonlinear dynamic 
system equation (6) from measurement data : 

 
𝑑

𝑑𝑡
𝑥 = 𝑓(𝑥)                                                                                   (10)     

 
𝑥  represents the state of system. A series of state 𝑿 along 

with related time derivatives 𝑿̇ can be measured: 
 

𝑿 =

⎣
⎢
⎢
⎡
𝑥𝑇(𝑡1)

𝑥𝑇(𝑡2)
⋮

𝑥𝑇(𝑡𝑛)⎦
⎥
⎥
⎤

      𝑿̇ =

⎣
⎢
⎢
⎡
𝑥̇𝑇(𝑡1)

𝑥̇𝑇(𝑡2)
⋮

𝑥̇𝑇(𝑡𝑛)⎦
⎥
⎥
⎤
                                                (11) 

3.1. Original SINDy Derivation 
The dynamics of the system can be reformed as coefficient 

vector Ξ multiplied with candidate functions library 𝚯(𝑿) [7]: 
 

𝑿̇ =  𝚵 𝚯(𝑿).                                                                                (12) 

The sparse representation of the system is then identified 
through sparse regression methods. It is crucial that a suitable 
candidate functions library is imported for SINDy to output 
accurate equations. As it is not always clear what terms are 
active in a given dynamic system, one of the challenges for 
applying SINDy is to search for these library functions. 

In the case of robotic dynamics with rational non-linearity, it is 
difficult to deal with massive and complex inverse 𝑴 and 𝑽 
matrices when transferring the standard dynamic Equation (8) 
into the form of Equation (12).  Therefore, an extended version 
named SINDy-PI is applied to avoid matrix transforming issue. 
3.2 SINDy-PI 

The SINDy-PI (parallel implicit)  extends the original SINDy into 
solving implicit nonlinear equations by making the following 
change to the general function 𝑓(𝑥) [11]: 

 
𝑓(𝑥, 𝑥̇) = 0                                                                                     (13) 

by generalizing the function library 𝚯 for both 𝑿 and 𝑿̇: 
 

𝜣(𝑿, 𝑿̇)𝚵 = 0.                                                                                (14) 

One of the key features of SINDy-PI is that each candidate 
function appearing in 𝚯 will be used to produce separate models, 
therefore the number of models it searches will grow as the 
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function library grows. This may cause an increase in computing 
time in the case of complex nonlinear systems.  

4. Results and discussion  

First, the equations proposed in this paper are validated using 
Simscape Multibody simulation, before being used to generate 
the candidate function library for SINDy-PI. In the next step,  
dynamic equations  estimated by SINDy-PI are validated. 

 
4.1 Equations of motion validation 

To validate dynamic equations with constraints proposed in 
this paper, a Simscape Multibody model is developed in this 
section and is considered as our benchmark model 
(𝑀𝑜𝑑𝑒𝑙𝑆𝑖𝑚𝑠𝑐𝑎𝑝𝑒). As mentioned in section 2.1, the mass of all 

four linkages are set to 1 kg, the length of all four linkages are 
set to 1 m, while internal spring-damper force law with damping 
coefficient set to  1𝑒 − 3 𝑁. 𝑚/(𝑟𝑎𝑑/𝑠) is applied at the joints 
to eliminate possible high frequency noise. Sine wave 
displacement inputs: 𝜃(𝑡) = 0.0698𝑠𝑖𝑛(𝑡 + 𝜋/2) are linked to 
both fixed joints, θ1 and θ4, and actuation torques applied to the 
joints are recorded.  The torque data is then applied on our 
Simulink model based on equations proposed (𝑀𝑜𝑑𝑒𝑙𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛) 

in Section 2.1 to compute joint angle evolution over time and 
can be used for comparison.  

Figure 1 shows the comparison of θ1, θ2, θ3, and θ4 between 

𝑀𝑜𝑑𝑒𝑙𝑆𝑖𝑚𝑠𝑐𝑎𝑝𝑒  and 𝑀𝑜𝑑𝑒𝑙𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛. As can be seen, for the first 

4 s, the error is kept very small. But after that, larger error value 
is observed. This is most likely because damping elements 
existing within 𝑀𝑜𝑑𝑒𝑙𝑆𝑖𝑚𝑠𝑐𝑎𝑝𝑒  are not considered within 

𝑀𝑜𝑑𝑒𝑙𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 . This results in slightly higher forces that 

translate to displacement drift in 𝑀𝑜𝑑𝑒𝑙𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 seen in Figure 

2 showing drift in the Ex and Ey direction.  Future models for 
𝑀𝑜𝑑𝑒𝑙𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 will seek to include damping elements. The root 

mean square error (RMSE) is applied here to estimate the 
accuracy: 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑡ℎ𝑒𝑡𝑎𝑆𝑖𝑚𝑠𝑐𝑎𝑝𝑒𝑖

− 𝑡ℎ𝑒𝑡𝑎𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑖
)2𝑛

𝑖=1             (15) 

where: 
  𝑛: number of data/value points;  
  𝑡ℎ𝑒𝑡𝑎𝑆𝑖𝑚𝑠𝑐𝑎𝑝𝑒𝑖

 : original joint ata from  𝑀𝑜𝑑𝑒𝑙𝑆𝑖𝑚𝑠𝑐𝑎𝑝𝑒; 

 𝑡ℎ𝑒𝑡𝑎𝑆𝑖𝑚𝑢𝑙𝑖𝑛𝑘𝑖
: joint data produced from 𝑀𝑜𝑑𝑒𝑙𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 . 

 
In summary, 𝑀𝑜𝑑𝑒𝑙𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛  succeeds in reproducing joints 

movements with RMSE values less than 0.04 rad in all 4 joints. 
 

4.2 SINDy-PI  recreation of system 
As described in equation (14), the dynamics of the 2DoF 

mechanism has a state vector 𝑿𝒎 = [𝜃1 𝜃2 𝜃3 𝜃4 𝜃̇1 𝜃̇2 𝜃̇3 𝜃̇4]  

and derivative vector 𝑿̇𝒎 = [𝜃̇1 𝜃̇2 𝜃̇3 𝜃̇4 𝜃̈1 𝜃̈2 𝜃̈3 𝜃̈4 ] . The 
input torques, 𝒖𝒎 = [u1 u2], would be the same data gathered 
in 4.1 applied on joints A and B. Data of all stated variables are 
collected over 10 seconds at a time step of 0.0001 s to train the 
SINDy-PI algorithm using 𝑀𝑜𝑑𝑒𝑙𝑆𝑖𝑚𝑠𝑐𝑎𝑝𝑒 . The candidate 

function library is generated based on equations validated in 4.1. 
By taking SINy-PI estimated equations back into the equations 
used in 𝑀𝑜𝑑𝑒𝑙𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛  resulting in new parameters for 

𝑀𝑜𝑑𝑒𝑙𝑆𝐼𝑁𝐷𝑦−𝑃𝐼, the joint data is then reproduced and compared 

with both data from 𝑀𝑜𝑑𝑒𝑙𝑆𝑖𝑚𝑠𝑐𝑎𝑝𝑒  and 𝑀𝑜𝑑𝑒𝑙𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 . The 

root mean square error (RMSE) is also applied here to estimate 
the accuracy of SINDy-PI identified models. 

 
Figure 1. Comparison of joint angles between 𝑀𝑜𝑑𝑒𝑙𝑆𝑖𝑚𝑠𝑐𝑎𝑝𝑒 and 
𝑀𝑜𝑑𝑒𝑙𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 

 
 

 
Figure 2. Comparison of Ex and Ey between 𝐌𝐨𝐝𝐞𝐥𝐞𝐪𝐮𝐚𝐭𝐢𝐨𝐧 and 

 𝐌𝐨𝐝𝐞𝐥𝐒𝐢𝐦𝐬𝐜𝐚𝐩𝐞  

Based on the collected data, SINDy-PI correctly identified 
governing equations for all four joints with maximum overall 
RMSE of 0.0501 rad for four joints (see Figures 3-6). 
 

 



  

 

Figure 3. Comparison of joint angle 𝜃1  among Modelequation , 

𝑀𝑜𝑑𝑒𝑙𝑆𝑖𝑚𝑠𝑐𝑎𝑝𝑒 and 𝑀𝑜𝑑𝑒𝑙𝑆𝐼𝑁𝐷𝑦−𝑃𝐼 

 

 
Figure 4. Comparison of joint angle 𝜃2  among 𝑀𝑜𝑑𝑒𝑙𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 , 

𝑀𝑜𝑑𝑒𝑙𝑆𝑖𝑚𝑠𝑐𝑎𝑝𝑒 and 𝑀𝑜𝑑𝑒𝑙𝑆𝐼𝑁𝐷𝑦−𝑃𝐼 

 

 
Figure 5. Comparison of joint angle 𝜃3  among 𝑀𝑜𝑑𝑒𝑙𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 , 

𝑀𝑜𝑑𝑒𝑙𝑆𝑖𝑚𝑠𝑐𝑎𝑝𝑒 and 𝑀𝑜𝑑𝑒𝑙𝑆𝐼𝑁𝐷𝑦−𝑃𝐼 

 
Figure 6. Comparison of joint angle 𝜃4  among 𝑀𝑜𝑑𝑒𝑙𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 , 

𝑀𝑜𝑑𝑒𝑙𝑆𝑖𝑚𝑠𝑐𝑎𝑝𝑒 and 𝑀𝑜𝑑𝑒𝑙𝑆𝐼𝑁𝐷𝑦−𝑃𝐼 

 

In this case, the SINDy-PI algorithm estimated equations using 
a candidate function library from 𝑀𝑜𝑑𝑒𝑙𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛. In other words, 

the parameters are estimated so that resulting equations would 
fit 𝑀𝑜𝑑𝑒𝑙𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛  for the best. Therefore, as can be seen in 

Figures 3-6, 𝑀𝑜𝑑𝑒𝑙𝑆𝐼𝑁𝐷𝑦−𝑃𝐼  shows a larger than 

𝑀𝑜𝑑𝑒𝑙𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛from 𝑀𝑜𝑑𝑒𝑙𝑆𝑖𝑚𝑠𝑐𝑎𝑝𝑒.Future work could be adding 

terms representing damping elements to the SINDy-PI function 
library and training the algorithm with data directly from 
Simscape simulation. 

5. Conclusion and future work      

In this paper, a 2DoF simulated mechanism is developed in 
Matlab simscape with the purpose of applying SINDy-PI 
algorithm for parametric identification. Based on the results 
from open loop simulation, it is concluded that SINDy-PI has the 

ability to determine nonlinear system dynamics from simulated 
data to a good accuracy, resulting in RMSE values below 0.05. 

The 2DoF mechanism was selected as a testing platform since 
it holds a good balance between non-linearity and complexity. 
Starting from the simplified equations and open-loop simulation, 
the use of SINDy-PI to determine system parameters will be 
further developed by: (1) development of a simscape multibody 
simulation of 2DoF mechanism along with closed loop controller, 
providing SINDy-PI with more a realistic data set to real world 
physics; (2) development of an experimental 2-DOF mechanism 
to use with SINDy-PI to evaluate accuracy of resulting equations; 
(3) finally we will test implementation of SINDy-PI directly on a 
Universal Robot UR5.   
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