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Abstract 
In the large-scale production of thin film products such as flexible electronics, roll-to-roll processes play a crucial role. The slot-die 
printing method of coating is commonly used in roll-to-roll as it offers a simple yet precise dispensing of conducting ink onto a wide 
flexible flat substrate. Optimisation of slot-die coating processes can be further achieved by integrating systems that control the key 
operating parameters. This work focuses on designing a feedback approach that incorporates a machine vision surface inspection. 
Analysing the edges of the printed ink on the substrate can provide meaningful information about the process performance. For edge 
detection, the authors have previously reported that using a standard computing method that uses the Sobel operator, enables the 
extraction of quantitative information related to the printed ink edge consistency and hence track width regularity. The authors have 
observed that in some cases where the edges are blurred, poorly illuminated, or have thin transparent coatings resulting in low 
contrast between ink and substrate, they are difficult to detect. Two different printed ink samples have been used in the present 
work. Here, the authors present a deep learning-based approach to enhance edge detection. It has been found that the Faint-Edges-
Detection approach performed better at identifying low-contrast edges compared to traditional approaches such as Sobel and Canny 
operators. The lateral arithmetic average RaLAT, was used as an indicator of the edge regularity along the printed track. Calculated 
RaLAT of difficult to quantify edges was found to be 0.65 micron through application of the deep learning-based algorithm. This process 
is achieved with no time penalty compared to Sobel-based methods. 
 
edge detection, low contrast, neural network, slot-die printing.  

1. Introduction 

Modern large scale flexible electronic manufacturing 
predominantly relies on the roll-to-roll (R2R) process for the 
production of a wide range of devices such as printed sensors, 
solar cells, organic light-emitting diodes, and electric vehicle 
batteries [1-4]. Large scale adaptation of R2R is due to its 
scalability, cost-efficiency, and the ability to integrate multiple 
layers and materials in a continuous process [1]. One of the key 
steps in the R2R manufacturing process is coating, where a thin 
uniform layer of usually conductive ink is applied to the 
substrate [5-6]. Among various coating techniques, such as 
Gravure printing, spray coating, screen coating; slot-die coating 
is often the first choice. This is because of its precise dispensing 
of ink, high throughput and large area coverage, as well as 
superior production speed [7-8]. Slot-die coating parameters 
can be further optimised by integrating feedback quality control 
systems. Despite having these advantages, a common coating 
defect at the ink edge often occurs as “ragged” edge patterns at 
during the coating process. Analysing the edge of the printed ink 
on the substrate can provide meaningful information about the 
ink-based coating process. Camera based optical quality control 
systems offer the advantage of low cost, non-contact, real-time, 
and can provide simple to use solutions [9-12]. Previously, the 
authors have reported on edge detection using a standard 
computing method that uses a Sobel operator to extract the 
quantitative information concerning the printed edge 
consistency and track width regularity [9]. However, there are 
cases where the edges are blurred, poorly illuminated, or have 
thin transparent coatings resulting in low contrast between ink 
and substrate, the ink track edges are difficult to detect.  

This study employs a deep learning-based approach to 
enhance the edge detection. Due to the hierarchical nature of 
feature learning, using a convolution neural network (CNN) is 
promising for many tasks including contrast-enhancement [13]. 
A faint edge detection approach (FED-CNN) has been employed 
to detect blurry and low-contrast edges. This approach is fast 
and accurate for binary edge (where only the edge pixels are 
highlighted as white against a black background) detection in 
noisy and low-contrast images. It has been proven to be orders 
of magnitude faster as well as achieving higher accuracy by 
training the network on a dataset of binary images [14]. In this 
work, the authors suggest the use of a pre-trained model of FED-
CNN for detection of edges of the printed ink on the substrate.  

2. Methods      

The faint edge detection convolutional neural network uses a 
multi-scale U-net network architecture that captures both fine 
and coarse features, which is crucial for accurate edge detection. 
It uses a custom edge preservation loss function that is designed 
to maintain the integrity of edge structure during the denoising 
process, ensuring essential features are retained. The model is 
trained on a dataset of binary images, enabling it to distinguish 
between edges and non-edges under various noise level. It 
operates with linear complexity with respect to number of pixels 
in an image, which makes it suitable for real-time applications. 
A detailed description about the model architecture and 
methodology is available in literature [14]. In this work, authors 
use the pre-trained model weight of the FED-CNN in training the 
dataset [14]. This approach enhances the training efficiency and 
improves detection performance on the test samples by taking 
advantages of learning from a large dataset. It provides a good 
starting point for the model with less training data which can be 
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then optimized for a given task. Two types of printed ink samples 
were used in this work: silver ink on a polyethylene 
terephthalate substrate (ink 1) and polymer blend ink on a 
titanium substrate (ink 2). For both cases, the printing 
parameters were set to a flow rate of 2.4 mL/min, a speed of 6 
m/min, and a 100 µm gap between the slot-die head and the 
substrate. Multiple categories of images have been collected 
using a CMOS camera (Baumer VCXG-15C.PTP, pixel size 3.45 µm 
x 3.45 µm). The training collected images have low visible edge 
contrast, very low edge contrast on transparent substrates and 
blurry edges as well as images where edge is clearly defined. The 
assessment camera was mounted perpendicular to the printed 
substrate to capture the image frames. Augmentation has been 
implemented to increase the number of training dataset images. 
A total of 80 images (used in the ratio of 80:20) were used for 
training and validating. No other pre-processing of the images 
has taken place besides conversion to grayscale. 

3. Results      

Firstly, a sharp edge image was used for the extraction of 
edges (see Figure 1 a). The deployed network was able to detect 
edges along with a residual edge as can be seen in  Figure 1b. 
Residual edges occur due to the drying up of the ink from the 
edges. From the output of the detected edge images, the edge 
profile of the ink was extracted as shown in the Figure 1c.  

 
Figure 1. Results of the edge detection. a) An image with a visible edge 
contrast between substrate and ink 1 and b) image showing detected 
edge profiles as an output of the network. c) The snippet shows the 
extracted edge profile of the detected edge for calculation of RaLAT. d) 
An image with low edge contrast between substrate and ink 2, and e) 
shows an image with very low edge contrast on a transparent substrate 
and ink 2. Snippet in images d) and e) shows the extracted edge profile 
for calculation of lateral roughness average. 

 
Further analysis was carried out to extract the ink edge for 
calculation of edge roughness average, RaLAT [9], in the lateral 

direction to assess print track straightness and consistency. This 
“roughness” value was calculated as the mean absolute 
deviation from the fitted line of the extracted lateral edge 
profile. The calculated value was found to be 0.65 µm. 
Subsequently, images with low edge contrast (see Figure 1d) and 
a very low edge contrast (see Figure 1e) on a transparent 
substrate were used for extraction of edges, and calculated RaLAT 
value was 0.90 µm and 2.82 µm respectively. Although the edge 
at very low contrast can be detected, the high roughness value 
may suggest that detection performance has decreased. The 
increased roughness value might be caused by weak feature 
extraction, or inconsistencies along the edge boundary.  

5. Conclusions      

These preliminary results indicate that blurry and low-contrast 
edges can be detected using FED-CNN. The calculated roughness 
parameter in the case of visible edge contrast is comparable to 
that of other reported methods [9]. However, the accuracy of 
detection of edges in the case of blurry and low-contrast images 
of transparent substrates may benefit from further 
improvement. In theory the accuracy could be by increasing the 
number of training images manifold. Such a vision system could 
be implemented into a feedback loop for printing control and 
provide a powerful tool for optimising R2R production 
parameters. This process is achieved with no time penalty 
compared to Sobel-based methods. Since this method is not 
dependent on material-specific properties, it can be extended to 
other ink and substrates combinations with appropriate 
parameter adjustments.  
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