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Abstract 
 
In milling processes, the selection of suboptimal process parameters can lead to the occurrence of regenerative chatter, a form of 
self-excited vibration. This phenomenon not only amplifies process forces but also accelerates tool wear, thereby diminishing the 
operational lifespan of the cutting tool. Additionally, these vibrations generate significant surface irregularities on the workpiece, 
which severely compromise surface finish quality—a critical aspect in precision machining. Given the significant influence of size 
effects and process damping, the prediction of dynamic behavior in micro-milling processes remains an active area of research. This 
highlights the necessity for online, sensor-based detection methods to minimize the negative effects of chatter. A primary challenge 
in employing sensors in micro-milling is the relatively low force magnitudes involved, which necessitate highly sensitive sensors. 
Achieving an adequate signal-to-noise ratio becomes increasingly difficult as milling dimensions decrease. In this study, three types 
of sensors—dynamometer, accelerometer and microphone—are utilized to gather data from micro-milling processes. The collected 
signals are subsequently analysed in both time and frequency domains to detect chatter. In the time domain, information regarding 
amplitude variations is extracted and two statistical indicators are compared. Fast Fourier Transform (FFT) is employed for frequency 
domain analysis. The results mark the capabilities and limitations of each sensor type, as well as the effectiveness of the chatter 
identification approach. 
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1. Introduction 

Preventing regenerative chatter vibrations is critical to 
mitigating their detrimental effects on surface quality, tool wear 
and machining productivity during milling operations. Although 
surface topography analysis offers precise chatter detection, its 
real-time application remains impractical. To address this, 
various sensors, such as dynamometers, accelerometers and 
acoustic emission sensors are employed to measure physical 
parameters like cutting forces, acceleration, and acoustic 
emission signals [1]. 

Dynamometers have limited frequency ranges, making them 
less effective for frequency analysis in micro-milling 
applications, where tools exhibit high natural frequencies. 
Accelerometers, offering a broader frequency range, are 
affected by noise levels that complicate their use in low-
amplitude vibration environments like micro-milling. Acoustic 
emission sensors can capture high-frequency signals from 
20 kHz to 1 MH, whereas microphones are effective in detecting 
audible frequencies below 20 kHz. A combination of different 
sensor types can enhance the chatter identification [1, 2]. 

Data acquired from sensors can be analyzed in both the time 
and frequency domains. In the time domain, statistical 
indicators such as mean, standard deviation, root mean square 
(RMS) and derived parameters from these are commonly 
utilized to identify chatter vibrations [3-5]. In the frequency 
domain, Fast Fourier Transform (FFT) and Power Spectral 
Density (PSD) are widely applied to identify frequency 
components linked to chatter vibrations [1, 6, 7]. Furthermore, 

FFT is frequently used to validate newly developed detection 
methodologies [1, 7, 8]. 

This study evaluates the effectiveness of three sensor types—
dynamometer, accelerometer and microphone—for chatter 
detection. Data is analyzed in the frequency domain using FFT, 
while the suitability of two statistical indicators for assessing the 
stability conditions of micro-milling processes is examined in the 
time domain. 

2. Methodology     

2.1. Experiment Setup 

The milling experiments were conducted using a modified 
MMC-1100 milling machine from LT Ultra-Precision Technology 
GmbH. Two-Flute micro end mills with diameters of 1.2 mm with 
were used as cutting tools, which induce sufficiently large forces 
to be measurable with the available sensors. 

A triaxial Kistler 9119AA1 multi-component dynamometer 
from Kistler Instrumente AG was directly mounted on the 
machine table to measure cutting forces. The workpiece was 
fixed using an adapter plate. A PCB Piezotronics 356A45 triaxial 
accelerometer, with a resonance frequency of 30 kHz, was 
attached to the adapter plate to capture vibrations. Additionally, 
the sound was recorded using the built-in microphone of a 
Xiaomi Mi 10T Lite smartphone. A comparison of the 
smartphone microphone's frequency response with a 
measurement-grade microphone featuring a constant linear 
frequency response revealed significant amplification in the 
range of 5 kHz to 9 kHz. However, these frequencies fall outside 
the tooth passing and chatter frequency ranges for this 
experiment and do not affect the results. 
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The workpiece material was RSA-501 aluminum alloy, 
produced by RSP Technology. This material has a chemical 
composition of AlMg5Mn1Sc0.8Zr0.4 and is characterized by its 
ultrafine grain structure, averaging less than 1 μm. This property 
enables high-precision surface machining [9]. The milling 
experiments were conducted using full immersion cutting. 
 
2.2. Surface topography 

The stability characteristics of milling processes were 
evaluated through the analysis of surface topography using the 
white light interferometer WYKO NT1100 from Veeco 
Instruments Inc.. Alongside clearly defined stable and unstable 
conditions, two transitional states were identified. In certain 
processes, subtle undulations were observed in the circular tool 
engagement marks, indicating the presence of slight but not 
fully developed chatter. Previous studies have similarly reported 
processes exhibiting mild chatter, which can be differentiated 
from fully unstable conditions based on the surface features of 
the workpiece [10, 11]. These stability states are illustrated in 
Figure 1, where n represents the spindle speed and ap the depth 

of cut. 
 

 
Figure 1: White light interferometry images at 20x magnification, 
illustrating different stability states with a feed per tooth fz = 10 μm 

2.3. Frequency domain 

Chatter frequencies were identified using FFT analysis of 
signals captured by both an accelerometer and a microphone. 
To distinguish frequencies associated with the cutting process 
from unrelated frequencies, signals recorded during tool 
engagement were compared to reference signals collected 
when the tool was not in contact with the workpiece. 

Analysis with an accelerometer featuring a resonance 
frequency of 50 kHz revealed that the chatter frequencies for 
the tools used in this experiment did not exceed 15 kHz. 

 
2.4. Time domain 

The periodic sampling method introduced by Honeycutt and 
Schmitz [12] was utilized to identify the stability states of milling 
processes. In this approach, the measurement signal is sampled 
at intervals corresponding to a single tooth engagement. The 
stability indicator M is calculated as the average of the absolute 
differences between all adjacent sampling points, Ai and Ai-1, as 
defined in Equation (1) [12]. Here, N denotes the total number 
of sampled points. For stable cutting conditions, this indicator 
value approaches zero. In contrast, the presence of self-excited 
vibrations leads to an increase in this value. 

M = 
∑ |Ai
N
i=2 -Ai-1|

N
 

(1) 

This method was applied to force, acceleration and acoustic 
signals. To mitigate the effects of tool runout, the stability 
indicator was recalculated using data sampled at intervals 
corresponding to one full tool revolution and then compared to 
results from the original sampling method. 

3. Results      

3.1. Frequency domain 

FFT analysis of acceleration and acoustic signals revealed 
modulation within the chatter frequency range across all milling 
processes. In this analysis, the chatter signal acts as the carrier, 
while the periodic excitation or spindle rotation signal serves as 
the low-frequency informational signal. 

Figure 2: illustrates the frequency-domain signals for three 
milling processes with distinct stability behaviors. The target 
tooth passing frequencies are 1000 Hz for the stable process and 
1016.6 Hz for the other two processes, corresponding to spindle 
speeds of 30,000 rpm and 30,500 rpm, respectively. 

In the stable process, harmonics of the tooth passing and 
spindle rotation frequencies are clearly visible in the 
acceleration data, distributed across the horizontal axis. A 
notable increase in excitation is observed at frequencies above 
12 kHz, coinciding with the tool’s natural frequency. In the sound 
signal, spindle-speed-dependent peaks are predominantly 
observed, with first harmonics below 4 kHz being particularly 
prominent. An amplitude increase between 6 kHz and 9 kHz is 
evident across all measurements, a characteristic feature of the 
microphone used. 

In the unstable process, as expected, chatter frequencies are 
strongly pronounced in all signals, with amplitudes significantly 
higher than those of the tooth passing frequency. Peaks 
associated with chatter vibrations are modulated within the 
10.5 kHz to 14.4 kHz range. 

The third process represents a transitional phase with slight 
chatter. In the acceleration data, the chatter frequency at 
13.3 kHz is distinctly visible with the highest amplitude, 
significantly exceeding that of the tooth passing frequency. This 
could lead to an erroneous classification of the process as 
unstable if only acceleration data were considered. However, in 
the acoustic signal, the chatter frequency is present, but its 
amplitude is lower than that of the tooth passing frequency. The 
highest peaks within the chatter frequency range are observed 
at 11.8 kHz and 12.3 kHz. 

The analysis revealed that chatter frequencies in acceleration 
data are not reliable indicators of process instability in micro-
milling, even when their amplitudes exceed those of the tooth 
passing frequency. Consequently, FFT analysis of acceleration 
signals alone proved to be insufficient for identifying stability 
behavior in micro-milling processes with such high chatter 
frequencies, given the limited frequency range of 
accelerometers. An alternative approach is to evaluate FFT 
results alongside time-domain signals, as amplitudes 
significantly increase during fully developed chatter 
vibrations [1]. 

For acoustic signals collected in this study, the ratio of the 
chatter frequency amplitude to the tooth passing frequency 

amplitude 
Afc
Afa

 has been identified as a suitable stability indicator: 

• Stable: 
Afc
Afa

= 0 — No chatter frequency is present. 

• Slight chatter: 
Afc
Afa

 < 1 — Chatter frequencies are present 

but have lower amplitudes than the tooth passing 
frequency. 

• Unstable: 
Afc
Afa

≫1 — Chatter frequency amplitudes 

significantly exceed the tooth passing frequency. 
 

Rubeo and Schmitz [13] validated the applicability of this 
stability indicator for macro-milling processes, focusing on 
displacement, velocity, and acceleration data. 

The microphone used in this study demonstrated a suitable 
frequency response for evaluating stability conditions. Unlike 

n = 30,500 min 1

ap= 10 μm
n = 30,500 min 1

ap= 50 μm
n = 30,000 min 1

ap= 100 μm



  

 

acceleration data, acoustic recordings do not capture machine 
table vibrations and typically contain fewer harmonics of the 
tooth passing frequency. These harmonics generally exhibit 
lower amplitudes than the tooth passing frequency, enabling 
faster and more efficient identification of chatter vibrations. 

  
 3.2. Time Domain 

 
Using the periodic sampling method, M-values were 

calculated based on the sampled measurement data from 
multiple milling processes. Figure 3 presents M-values sampled 
at the tooth passing frequency, while Figure 4 shows those 
sampled with a time interval corresponding to one full tool 
revolution. 

When sampling at the tooth passing frequency, the M-values 
derived from acceleration data effectively distinguished 
between stable and unstable processes, with no overlap 
observed. However, these values were unable to differentiate 
stable processes from those with slight chatter. For force and 
acoustic signals, this sampling interval proved unsuitable, as the 
resulting M-values did not provide meaningful distinctions. 

When sampling with a time interval of one full tool revolution, 
the force data showed a significant improvement in stability 
identification, with clear separation between stable and 
unstable processes and no overlap. However, the presence of 
slight chatter could still not be definitively identified. 

For the acceleration data, the M-values obtained with this 
time interval allowed for a clear separation of the different 
stability behaviors, enabling precise identification of these 
states. In contrast, for acoustic signals, the M-values remained 
ineffective for identifying stability behavior, regardless of the 
sampling frequency used. 

 

 
Figure 3: M-values for different signal types sampled at the tooth passing 

frequency. Process parameters: spindle speed ranging n = 15,000 min-1 
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Figure 2: FFT of the recorded acceleration and sound signals for three different stability states with a feed per tooth fz = 10 µm 
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to 30,500 min-1, depth of cut ap = 50 µm to 600 µm, and feed per tooth 

fz = 10 µm. 

 

 
Figure 4: M-values for different signal types sampled at intervals of one 
tool revolution. Process parameters: spindle speed ranging n = 15,000 

min-1 to 30,500 min-1, depth of cut ap = 50 µm to 600 µm, and feed per 

tooth fz = 10 µm. 

4. Conclusion 

This study evaluated the effectiveness of dynamometers, 
accelerometers and microphones for in situ detection of chatter 
in micro-milling processes, focusing on both time-domain and 
frequency-domain analyses. The results demonstrate that while 
FFT analysis of acceleration signals provides insights into chatter 
frequencies, it is insufficient for reliably identifying stability 
states due to limitations in distinguishing between stable, 
transitional and unstable processes. In contrast, the ratio of 
chatter frequency amplitude to tooth passing frequency 
amplitude in acoustic signals proves to be a robust stability 
indicator, capable of differentiating between these states. 

Periodic sampling methods further revealed that sampling at 
one tool revolution intervals improves stability identification for 
force and acceleration data. However, slight chatter remains 
challenging to identify with force data and acoustic signals are 
unsuitable for M-value analysis under these conditions. Overall, 
the combination of frequency and time-domain analyses, 
particularly leveraging acoustic signals, offers a promising 
approach for efficient and accurate chatter detection in micro-
milling processes. 
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