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Abstract 
In precision optics manufacturing, transferring components between multiple machines introduces uncertainties due to datum 
changes. On-machine surface measurement (OMSM) integrates a non-contact profiler directly with the manufacturing platform, 
overcoming this bottleneck. However, dynamic measurement errors, arising from both the host machine and the integrated 
subsystem, significantly degrade the measurement accuracy. Traditional offline system identification methods struggle to capture 
the overall system response using a generalised model under time-varying dynamics and uncertain model orders. This study proposes 
a novel AI-assisted calibration approach based on deep learning to enable adaptive error compensation in OMSM systems. 
Specifically, a regression model using Long Short-Term Memory (LSTM) networks is developed to learn the complex temporal 
dependencies and nonlinear dynamics inherent in the system. The experimental results demonstrate that the LSTM-based calibration 
achieves comparable accuracy to traditional methods while offering greater adaptability, automation, and scalability. In a practical 
test on an off-axis parabolic (OAP) surface, the model significantly reduced the root mean square (RMS) of measurement error from 
1.9073 µm to 0.4324 µm by compensating for dynamic errors caused by vibrations and fluctuating conditions. These findings highlight 
the potential of LSTM networks to improve the efficiency and robustness of OMSM systems, contributing to the development of 
intelligent and adaptive error calibration frameworks for smart manufacturing. 
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1. Introduction 

In precision optics manufacturing, transferring components 
between machines introduces uncertainties due to changes in 
the datum reference, which adversely affect measurement 
precision. On-machine surface measurement (OMSM) 
addresses this issue by integrating a non-contact profiler directly 
with the manufacturing platform [1,4]. However, OMSM 
systems are susceptible to dynamic measurement errors arising 
from the interaction between the profiler and the host machine, 
which can significantly degrade measurement accuracy [2,3]. 

These interactions are inherently coupled and complex, posing 
substantial challenges for conventional fixed-order modelling 
approaches, which often fail to capture the underlying dynamics 
effectively. To overcome these limitations, this study proposes a 
learning-based approach that leverages neural networks to 
model and compensate for dynamic errors with high accuracy. 
The architecture of the proposed method is illustrated in Fig. 1. 
By capturing complex temporal dependencies and nonlinear 
relationships within the system data, the neural network-based 
model demonstrates strong potential as a reliable, adaptive, and 
efficient solution for dynamic error calibration in OMSM 
systems.

 

 
Figure 1. Diagram of the AI-assisted calibration workflow.  
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2. Related work     

Traditional calibration methods rely on error models that 
incorporate the kinematic and dynamic properties of machine 
systems. These approaches typically require data collection 
under controlled conditions, followed by model selection and 
parameter estimation through multiple experimental trials [5]. 
However, developing an accurate physical model is both time-
consuming and labour-intensive. Moreover, such models are 
typically fixed in structure and lack adaptability to real-time 
variations—such as self-excited vibrations or environmental 
fluctuations—thereby limiting their effectiveness in dynamic 
manufacturing environments.  

Deep learning has advanced time series prediction by 
capturing temporal and nonlinear patterns. Common models 
include Recurrent Neural Networks (RNNs) [6], Long Short-Term 
Memory Networks (LSTMs) [7], Gated Recurrent Units (GRUs) 
[8], and Transformers [9]. RNNs handle sequences but struggle 
with long-term dependencies due to vanishing gradients. LSTMs 
solve this using gating mechanisms, allowing them to learn both 
short- and long-term patterns [10]. GRUs offer a simplified 
alternative to LSTMs with similar performance and lower 
computational cost [11]. Transformers, such as BERT and GPT, 
use self-attention to capture global dependencies and achieve 
strong results, though they require large datasets and significant 
computational resources [12,13]. Among these models, LSTMs 
provide an effective trade-off between accuracy and efficiency, 
making them well-suited for time series prediction in data- and 
resource-constrained environments. 

3. Methodology       

3.1. System Description and Problem Formulation 
The OMSM system is set up on a Moore Nanotech 650FG v2 

diamond turning machine, as shown in Fig. 2. Measurement data 
are collected using the in-house HUD-NCv3 controller, 
generating continuous surface profiles with six data channels, 
including probe distance, C-axis angle, and X-Y-Z-B axis positions. 
The probe is aligned to the surface through controlled machine 
motion. A Precitech CHRocodile chromatic confocal sensor, with 
a 100 µm  a g  a d 9  m   p a abi i y, m asu  s  h  su fac  
along an Archimedean spi a  pa h a  a spi d   sp  d  f 30  pm 
and an X-axis feed rate of 3 mm/mi . 

The system's dynamic-induced measurement error is defined 
as 𝐸 𝑡  =  𝐷2 𝑡  − 𝐷1 𝑡 . Where D1 is the reference reading 
from the grating encoder and D2 s the distance measured by the 
chromatic confocal sensor. When the linear motor moves the 
sensor, the measured distance follows the system response, 

represented as 𝐷2 𝑡 =  𝐺(𝐷1 𝑡 ) . Where G(•) is the 

transferring function of the system. The traditional calibration 
process aims to estimate the G(•) employing system 
identification. However, the complexity and varying 
configurations of the feed system make optimal estimation 
impractical and inefficient.  

 
Figure 2. Measurement system set up. 

3.2. Proposed AI-Assisted Calibration Method 
As shown in Fig. 3, the architecture of the proposed method 

begins with a sequence input layer that processes time-series 
data, including operational parameters and environmental 
conditions. These inputs are fed into multiple LSTM layers to 
capture temporal features and nonlinear patterns. Finally, fully 
connected layers convert these features into regression outputs 
that predict dynamic measurement errors [14]. The model is 
trained using the MSE loss function to minimise the difference 
between predicted and actual errors, ensuring accurate and 
reliable calibration [15]. The internal mechanism of the LSTM 
network [16, 10], shown in Fig. 4, consists of several key gates 
that regulate the flow of information: 

• Forget Gate: Determines which information from the 
previous memory state should be discarded. 𝑓𝑡 =

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑓 ⋅ 𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓  

• Input Gate: Decides how much of the current input to store 
in the cell state. 𝑖𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑊𝑖 ⋅ 𝑥𝑡 + 𝑈𝑖 .ℎ𝑡−1 + 𝑏𝑖  

• Candidate Gate: Generates new values to update the cell 
state. 𝐶̃𝑡 = tanh 𝑊𝑐 ⋅ 𝑥𝑡 + 𝑈𝑐 .ℎ𝑡−1 + 𝑏𝑐  

• Cell State Update: Updates the cell state by combining the 
forget gate and candidate cell state. 𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝐶̃𝑡 

• Output Gate: Decides how much of the cell state to pass to 
the hidden state. 𝑜𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑊𝑜 ⋅ 𝑥𝑡 + 𝑈𝑜.ℎ𝑡−1 + 𝑏𝑜  

Where 𝑊𝑓 ,𝑊𝑖 ,𝑊𝑐 ,𝑊𝑜, 𝑈𝑓 , 𝑈𝑖 , 𝑈𝑐  are model weights; 

𝑏𝑓 , 𝑏𝑖 , 𝑏𝑐 , 𝑏𝑜  are bias; 𝑥𝑡 , 𝑜𝑡  are input and output; ℎ𝑡−1, ℎ𝑡 

denotes hidden states, 𝐶𝑡−1, 𝐶𝑡 represents candidate cell. These 
gates, controlled by sigmoid and tanh functions, allow the LSTM 
network to update its memory and capture both short-term and 
long-term patterns in sequence data. 

The calibration process is divided into two phases: training and 
prediction. During the training phase, historical data collected 
from the OMSM system under varying operational conditions is 
used to train the LSTM model offline. Once trained, the model is 
validated and tested to assess its ability to predict dynamic 
measurement errors. These predictions are then used to correct 
measurement inaccuracies, improving the precision of the 
OMSM system and confirming the effectiveness of the proposed 
method. 

 
Figure 3. LSTM-based model diagram for measurement error prediction 

 
Figure 4. LSTM neural network architecture and work principle 

4. Experiments      

4.1. Data Acquisition and Experimental Setup 
To ensure the LSTM model can generalise dynamic errors 

under typical conditions, a dataset was collected using the 
OMSM system in a setup that mimics real-world environments, 
including vibrations and system fluctuations. Measurements on 
precision optical components captured errors from both the 
host machine and profiler, providing data for training, validation, 
and testing. Under the constraint of requiring ground-truth 
reference measurements, the dataset was collected from a 
single freeform optical surface. Although this limits the ability to 



  

 

evaluate the model on unseen surfaces, the calibration targets 
system-induced errors originating from the measurement 
system rather than being surface-dependent. The selected 
surface provides sufficient variation in measurement conditions 
to train and evaluate the model effectively.  

 
Figure 5. Measurements vs errors need to be compensated; sampled 
segmented sequence for training 

The collected data consisted of 1D vectors representing real-
time measurements and their corresponding reference values. 
A preprocessing pipeline was developed to prepare the data for 
LSTM regression training. First, both input (Xdata) and target 
(Ydata) were normalised to the [0, 1] range using min-max 
scaling to ensure consistent feature scales for stable training. 
The data was then segmented into overlapping sequences of a 
set length using a tuneable stride, allowing the model to capture 
temporal dependencies (see Fig. 5), as required by the LSTM 
input format. Next, the dataset was divided into training (70%), 
validation (15%), and test (15%) sets to support independent 
training, tuning, and evaluation. The sequences were then 
organised into cell arrays, with each cell holding one sequence, 
enabling efficient LSTM processing. This preprocessing approach 
ensures the data is correctly scaled, formatted, and partitioned 
for effective model training and evaluation. 
Table 1 Measurements set-up 

Conditions System set-up Number 

Freeform surface Elastic 230095×1 

SampleLength=4000 StrideSize=50 TotalNumber=4521 

Training Validation Test 

1×4000×3165 1×4000×678 1×4000×678 

 
4.2. Results and Analysis 

 LSTM training hyperparameters play a key role in model 
performance and convergence. MinibatchSize sets the number 
of samples per update—smaller values may improve 
generalisation but cause noisy gradients, while larger ones 
reduce noise but need more memory. Layer Depth controls how 
many LSTM layers are stacked; deeper networks capture 
complex patterns but may overfit and increase computation. 
The Adam optimizer is used for its adaptive learning rate and 
stable convergence. InitialLearnRate sets the update size—too 
high can cause instability, too low slows training. 
LearnRateDropPeriod and LearnRateDropFactor reduce the 
learning rate over time to escape local minima. 
GradientThreshold limits gradient size to prevent instability. 
MaxEpoch defines the number of training cycles, balancing 

accuracy and time. ValidationFrequency controls how often 
validation runs to track overfitting and support early stopping. 
All experiments are conducted on MATLAB(2024a), the system 
with specifications of core i7-11800H, 11th generation Intel 
processor with 16GB RAM, and GPU of NVIDIA GeForce RTX 
3060 of 3584 CUDA core. 
Table 3 Hyper-parameters 

Parameters  Definition Value 

MinibatchSize Number of samples each batch  32 

Layer depth Number of LSTM layers 200 

Optimizer Optimisation algorithm  Adam 

InitialLearnRate Initial learning rate for training 0.001 

MaxEpoch Total training epochs 100 

ValidationFrequency Validation in epochs 10 

Loss function ∑ 𝑦𝑖 − 𝑦̂𝑖 
2 MSE 

The proposed model is tested on the whole surface dataset 
and compared to the traditional transfer function method, 
focusing on accuracy, generalisation, and efficiency. With a test 
dataset MSE of 0.001, accuracy is evaluated using metrics RMSE, 
MAD, and PV value to quantify the error reduction.  Efficiency is 
assessed by analysing the time required for prediction and 
tuning, providing insights into its practical use.  
Table 4 Evaluation of LSTM and transfer function 

Parameter Value 

CPU Training 4-6h 

Process 1.4s 

GPU Training  1.5h 

Uncompensated errors RMSE = 1.9073 

MAD = 1.8792 

PV = 6.0042 

Accuracy 
(Errors after LSTM) 

RMSE = 0.4324 

MAD = 0.1412 

PV = 349.0326 

Accuracy 
(Errors after transfer function) 

RMSE = 0.6577 

MAD = 0.1804 

PV = 6.7721 

Tab. 4 shows LSTM-based model outperforms the traditional 
transfer function approach in accuracy, efficiency, and 
consistency. It achieves lower prediction errors, with an RMSE of 
0.4324 and MAD of 0.1412, compared to 0.6577 and 0.1804 
from the traditional method. The LSTM model also offers faster 
GPU training (1.5 hours) and quick inference (1.4 seconds), 
making it suitable for practical on-machine measurement 
applications. However, the LSTM results show a high peak-to-
valley (PV) value of 349.0326. This is not due to a unit mismatch 
but occurs du i g  h  m d  ’s i i ia  cha ac   isa i   phas . A  
the beginning of inference, the LSTM needs a few time steps to 
synchronise its internal memory states with the input data. 
During this warm-up period, temporary spikes can appear. These 
stabilise as the model receives more input and adjusts its 
internal parameters. In real-time applications, this issue can be 
addressed by discarding initial outputs, adding a brief 
initialisation step, or applying constraints to limit sudden output 
changes. These results show that the LSTM model provides 
accurate and reliable predictions with lower computational cost, 
making it practical and scalable for real-world use.  

Fig. 6 provides visua  c  fi ma i    f  h  LSTM m d  ’s 
effectiveness. Fig. 6(a) demonstrates the test data performance 
of error prediction, showing a close alignment between the 
predicted errors and the reference values, with minimal 
discrepancies. Fig. 6(b) and (c) demonstrate how the AI-
compensated measurements align with the reference data over 
time, faithfully reproducing dynamic oscillations and amplitude 
decay.  The AI-based approach accurately captures the 
oscillations and decreasing amplitude, showing its precision in 
handling dynamic signals. Fig. 6(d) compares uncompensated, 
transfer function– compensated, and AI-compensated errors, 
high igh i g  h  AI m  h d’s b      p  f  ma c  i    duci g 



  

 

errors and stabilising the measurements. Overall, the high PV is 
du      h  LSTM’s   a si    wa m-up phase, but the model 
performs well once stabilised. Even with data from a single 
surface, the LSTM model outperformed the traditional transfer 
function method, showing lower RMSE, reduced MAD, and 
better signal stability, confirming its effectiveness for real-world 
error compensation. 

 

 

 

 
Figure 6. Evaluation performance of error predictions 

5. Conclusion and Future Work 

This study proposes an AI-assisted calibration framework using 
LSTM networks to correct dynamic measurement errors in 
OMSM systems. The model captures system dynamics and 
effectively reduces residual errors, with the median dropping 
f  m 1.8792 µm    0.1412 µm a d RMSE f  m 1.9073 µm    
0.4324 µm. U  ik    adi i  a  m  h ds, i  av ids c mp  x 
modelling and tuning, offering a more practical solution. These 
results highlight the potential of AI to improve calibration, 
precision, and automation in smart manufacturing. 

While the LSTM-based framework shows strong performance, 
its implementation faces some challenges. It relies on sufficient 
and diverse historical data with accurate reference 

measurements to ensure reliable learning and prevent 
overfitting. Since our dataset comes from a single surface, 
generalisation to unseen surfaces has not been fully assessed; 
however, the model focuses on correcting system-induced 
errors rather than surface-specific features. Real-time use may 
also require significant computing resources, especially in high-
frequency systems. Future work will expand the dataset to 
include more operating conditions, surface types, and system 
dynamics to improve generalisation. The framework will be 
adapted for real-time use by embedding it into machine 
controllers for on-the-fly calibration. We also plan to explore 
hybrid models, such as combining LSTM with transformers and 
attention mechanisms, to enhance accuracy and flexibility. 
Interpretability methods will be added to build user trust and 
support wider adoption in precision manufacturing. 
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