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Abstract 
 
This paper presents a newly developed digital twin (DT) of dynamic errors of a robotic machining system in real time. A dynamic error 
test was performed to obtain acceleration data near the tool centre position (TCP) of the robot DT by using accelerometers (PCB 
356B18) and ground truth dynamic errors at the TCP measured by a laser interferometer (Renishaw ML10). An ensembled bagged 
tree machine learning algorithm was used to develop the dynamic error prediction model as a function of eight features of 
accelerations at the TCP. The machine learning prediction model forms the core part of the DT of dynamic errors. The accuracy of DT 
prediction was evaluated by future dynamic tests. The evaluation results show that the DT can accurately model the dynamic errors 
with a mean absolute error of 11µm. This DT approach lays down a solid foundation for developing a DT-driven error compensation 
approach for dynamic errors in robotic manufacturing.  
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1. Introduction 

Due to the advantages of high flexibility, adaptability and 
relatively low cost, industrial robots have been adopted in many 
factories for material handling, assembly, manufacturing, quality 
inspection, packing, and palletisation to improve productivity [1-
4]. However, robotic machining has a low exposure due to its 
limited accuracy and material removal rate [1]. This is because 
the robot's encoders used in feedback control cannot detect the 
positional error caused by deformations beyond the flange in 
links and gears due to forces such as machining forces, gravity 
and inertia. Machining forces were found to contribute 8-10% of 
pose errors at the robot's tool centre position (TCP) [5, 6], while 
the frequent acceleration and deceleration of robots and change 
of loading result in time-dependent dynamic errors significantly 
affected the robot's positional accuracy [7]. It is important to 
model these dynamic errors to enhance machining accuracy. 
Digital twin (DT) is a digital representation of physical systems 
incorporating real-time communication between the physical 
and cyber domains using sensor data. It has already been used 
to predict tracking errors in machining [9]. DT technology 
provides a potential solution for modelling dynamic errors.  

In robotic machining, dynamic errors depend on structural 
characteristics like component stiffness and factors such as 
gravity and inertia [8]. Developing a generic approach to 
accurately model dynamics error in real-time is challenging. 
Addressing this problem was a key motivation for this work. This 
paper presented an initial feasibility study of a generic approach 
of establishing DT of dynamic errors in a robotic machining 
system by using low-cost industrial viable accelerometers and 
machine learning. The work will lay down a solid foundation for 
a DT-driven error compensation approach in the near future. 

2. Methodology    

 
 
 
 
 
 
 
 
 
 
 
 
 

The methodology to establish a DT of dynamic error of a 
robotic machining system is illustrated in Figure 1. It is realised 
by measuring accelerations near the TCP and at the base of the 
robotic machining system by two accelerometers. By dividing 
the two accelerations data, the background noise will be 
removed. Acceleration data is split into different features, which 
will be utilised as inputs to a machine-learning precision model 
for dynamic error. 

A laser interferometer will be used to measure the linear 
displacement of the TCP. This is the ground truth data, and 
subtracting the command data from the ground truth is 
considered as dynamic errors in this paper. The data of 
measured dynamic errors and features of accelerations near the 
TCP will be used to train a machine learning prediction model in 
which the dynamic error is presented as a function of features 
of accelerations. 
Once the machine learning prediction model is calibrated by 
further experimental data, it will be used in the DT, which will 
take live acceleration input data to predict dynamic errors at the 
TCP. The prediction results will be used to update the command 

Figure 1 DT block diagram. 
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sent back to the robot to mitigate dynamic errors before they 
take effect. 

3. Experimental setup and procedure for dynamic test 

As shown in Figure 2, a UR10e collaborative robot with a 
spindle mounted at its arm as an end effector was used in this 
study. The UR10e robot has repeatability of 50 µm. Two PCB 
triaxial accelerometers (356B18) are mounted on the spindle 
and robot's base respectively. A Renishaw laser interferometer 
(ML10) was used to measure the displacement of the TCP as the 
ground truth data to obtain dynamic errors by subtracting the 
command data. A National Instruments data acquisition device 
(DAQ-9174) was used to collect the accelerometer and 
displacement signals simultaneously. The synchronisation of 
data collection was controlled by a MATLAB program. 

In the dynamic test, the robot arm moved in a straight line with 
a displacement of 200mm and a velocity of 10mm/s along the X 
direction. The test was repeated 15 times to obtain sufficient 
data for machine learning training. 
All acceleration signals were filtered through a low pass filter set 
at 50Hz to remove the low-frequency noise. The differentiation 
of acceleration was turned into features using various functions 
such as mean,  skewness, kurtosis, dominant frequency, spectral 
Bandwidth and more. These extracted acceleration features and 
the corresponding dynamic errors will form a training dataset to 
develop prediction models using a MATLAB regression learner 
toolbox. The prediction accuracy of the established dynamic 
error prediction model was validated by further dynamic tests. 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. Results and discussions      

In this study, raw acceleration data was filtered and directly fed 
through different functions to characterise the features of 
acceleration signals. This allows different system dynamics to be 
understood using one data source. Eight of the most effective 
features were selected for modelling dynamic errors in this 
study, including mean in X and Y, median of X, sum of the 
absolute in Z, peak-2-peak X, root mean square X, Skewness Z 
and command position. These features give a root mean square 
error of 0.014 on test data using the best ML model tested, an 
ensembled bagged tree in this study. 

A maximum displacement at the TCP measured by laser 
interferometer was 200.05mm, meaning a dynamic error of 50 
µm, while the encoder only recorded a displacement of 
199.68mm. This indicates that 82 um of dynamic errors cannot 
be measured by the encoder and therefore, will be missed in the 
feedback control loop. It can be seen from Figure 3 that the DT 
predicted a maximum dynamic error of 235 µm while the true 
maximum dynamic error was 257 µm measured by the laser 
interferometer. The presence of prediction errors is because the 
selected acceleration features cannot capture all machine 
dynamics, i.e., unknowing dynamics are encountered by the 
machined learning prediction error model. Further 

improvement of the prediction accuracy of the model should be 
focused on the accuracy and comprehensiveness of extracting 
features of acceleration signals to allow the magnitude of these 
errors to be reduced. As shown in Figure 3, the DT can accurately 
predict dynamic errors with a mean absolute prediction error of 
the DT is 11 µm. This performance is better than that of the 
encoder, which provides an average error from the command 
path of 32 µm and a further 50 µm from the laser interferometer 
readings. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Limitations of this DT approach are as follows: 1) Due to the 
nonlinear dynamics of the robot system, training would be 
recommended for multiple locations. 2) Accelerometers have 
low-frequency noise, leading to signalled vibrations on lower 
frequencies that result in incorrect vibrations and inaccuracies 
within the control system and dynamic error model. 3) Collecting 
data using an NI datalogger and controlling the robot while 
calculating the errors and updating positioning is 
computationally challenging. This limits the sampling rate at the 
frequency of corrections. 

5. Conclusions    

This paper presented a DT of a dynamic error. It uses 
acceleration measured by triaxial accelerometers as inputs to 
predict and compensate for dynamic errors caused by 
acceleration, deceleration and vibration within a robotic 
machining system. A prediction error of 11 µm was achieved in 
this study. Future work will concentrate on improving the 
accuracy and robustness of the approach to obtain more data at 
a broader range of accelerations and velocities, including 
circular movements that can be predicted during machining, 
using a similar methodology to train the prediction model. 
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Figure 2 Dynamic test setup. 

Figure 3 Comparison of DT predicted dynamic error and 
measured by robot encoder and laser interferometer. 


