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Abstract 
A simultaneous design of linear feedforward filters and nonlinear feedback controllers containing reset elements is explained in this 
contribution. The feedback reset controllers achieve higher controller bandwidths in comparison to conventional linear control strat-
egies, which in turn enables better suppression of machine disturbances and vibrations induced by parasitic dynamics. The feedfor-
ward controller is a combination of components related to the reference position trajectory and its time-derivatives (e.g., velocity, 
acceleration, jerk, and/or snap). The obtained feedforward signal is then carefully filtered before being applied to the system, such 
as to minimize excitation of system resonances. Since too much filtering can also lead to degradation of motion tracking accuracy of 
the reference trajectory, a smart trade-off is made by means of the presented control design approach. Besides a mathematical 
formulation of the holistic design of nonlinear feedback and linear feedforward filters, the effectiveness of this contribution is demon-
strated with an illustrative improvement of the motion performance of an ASMPT wire bonder machine. Measurement results obta-
ined on this machine highlight the merits of the simultaneously designed nonlinear feedback and linear feedforward filters with 
respect to conventional (linear) feedback and feedforward control laws. 
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1. Introduction 

Ever-increasing performance and reliability requirements are 
posed on new generations of machines for semiconductor man-
ufacturing. Products of ASMPT Ltd. are examples of such ma-
chines. Since fierce competition sets firm constraints on the 
market prices of these machines, advanced software motion 
control algorithms are preferable enhancers of machine capabil-
ities compared to relatively expensive hardware solutions. In 
fact, advanced motion control is the critical enabler of high 
throughput, precision, and reliability of these machines. In this 
contribution we present a holistic approach to design feedback 
and feedforward laws for high-performance motion control. In 
particular, we explain the simultaneous design of linear feedfor-
ward filters and nonlinear feedback controllers containing reset 
elements. A concurrent design of feedback and feedforward 
controllers is proposed in [1]. However, that method is only ap-
plicable to preselected reference trajectories. Also, the feedback 
controllers are just linear ones. 

In this contribution, we consider concurrent design of feed 

back and feedforward controllers that can accommodate a wide 
range of reference trajectories. Also, the feedback controllers 
are nonlinear and, thus, allow higher control bandwidths with 
respect to linear ones. We specifically use nonlinear reset con-
trol because of its well-developed frequency-domain design 
tools in comparison to other nonlinear control strategies [2]. We 
confine ourselves to single-input single-output (SISO) motion 
systems. In Figure 1, the dynamics of a SISO motion system are 
described in state-space with scalar input 𝑢(𝑡) and output 𝑝(𝑡), 
both functions of time 𝑡; SISO feedback and feedforward control 
laws are represented by 𝑢fb and 𝑢ff, respectively. The control 
design methodology to be described in this contribution can also 
be extended to systems with multiple inputs and outputs, but 
this is outside the scope of this paper. 

In Section 2, we formulate the problem of simultaneous design 
of feedback and feedforward control laws. Section 3 describes a 
solution to this control problem including the mathematical  
description of a feedback reset controller. An industrial case-
study of the simultaneous feedback and feedforward control  
design is shown in Section 4. Conclusions and an outlook of  
future developments are given in Section 5. 

 
Figure 1. Generic control architecture of a SISO motion system. 

2. Control problem formulation 

A generic control architecture of a SISO motion system is de-
picted in Figure 1. Here, the reference position trajectory 𝑝r(𝑡) 

is computed by a setpoint generator based on the desired mo-
tion distance, travel time, and constraints on time-derivatives of 
𝑝r(𝑡), such as the peak values of speed 𝑣r(𝑡), acceleration 𝑎r(𝑡), 
jerk 𝑗r(𝑡), and snap 𝑠r(𝑡); computation of the reference motion 

http://www.euspen.eu/


  

profiles is explained in [3]. The reference motion profiles, de-
noted by subscript ‘r’, are computed using mathematical equa-
tions formulated in continuous time 𝑡. Position 𝑝(𝑡) of the con-
trolled system is also in continuous time. However, due to digital 
control implementation, all time-variables are sampled at dis-
crete-time 𝑡𝑘 = 𝑘𝑇s, where 𝑇s is the sampling period and 𝑘 ∈ ℕ0 
denotes the sample number; for convenience, all sampled vari-
ables have 𝑘 as argument. In Figure 1, position error 𝑒 is defined 
as 𝑒 = 𝑝r − 𝑝, feedback control law 𝑢fb is a function of 𝑒, feed-
forward control law 𝑢ff is a function of the reference motion pro-
files, and total control signal 𝑢 = 𝑢fb + 𝑢ff is the input to the 
motion system, after being subject to digital-to-analog (D/A) 
conversion. Here, we assume linear-time invariant dynamics of 
the SISO motion system whose state-space model is given by 

𝒙̇ = 𝑨𝒙 + 𝒃𝑢, 𝑝 = 𝒄T𝒙, where 𝒙, 𝒃, 𝒄 ∈ ℝ𝑙, 𝑨 ∈ ℝ𝑙×𝑙, 𝑙 denotes 
the number of states, and ‘T’ is the transpose operator. 

In the business of development and engineering of semicon-
ductor manufacturing equipment, there is an everlasting aspira-
tion to achieve higher machine throughputs without increasing 
hardware costs. That requires optimization of all elements of the 
control system depicted in Figure 1. A method to optimize the 
reference trajectory is described in [3]. In the following section, 
we explain optimisation of the feedback and feedforward con-
trol laws 𝑢fb and 𝑢ff, respectively. 

3. Simultaneous feedback and feedforward control design 

Design and tuning of high-performance motion control algo-
rithms, and especially full automation of these processes, are fo-
cal points of motion control teams at ASMPT. Instead of spend-
ing their own scarce time on controller design and tuning, the 
ASMPT control engineers are nowadays just focused on motion 
control performance specification, while the actual controller 
design and tuning is accomplished by control software. This sort 
of automation speeds up the design of high-performance mo-
tion control laws, enhances uniformity of controller tunings, re-
duces dependency on control experts, and raises interest of en-
gineers without formal education in control technology to be in-
volved in motion control. 

The controller design and tuning of the controller settings is 
performed in the frequency domain using the loop-shaping 
method [4]. Here, we make use of sensitivity functions without 
and with the feedforward control law. Both sensitivity functions 
are formulated in the Z-domain [5]. The first one, 𝑆fb, represents 
the transfer function from the reference position trajectory to 
the error with only the feedback control law included: 

 𝑆fb(𝑧) =  
𝐸(𝑧)

𝑃r(𝑧)
=

1

1+𝑃(𝑧)𝐶fb(𝑧)
,  (1) 

where 𝑃r and 𝐸 represent the Z-transforms of 𝑝r(𝑘) and 𝑒(𝑘), 
respectively, 𝐶fb(𝑧) is a transfer function representation of the 
feedback control law 𝑢fb, and 𝑃(𝑧) is a transfer function repre-
sentation of the plant dynamics; here, 𝑃(𝑧) is the zero-order-
hold (ZOH) discretisation [5] of the plant transfer function in the 
Laplace (s) domain 𝑃(𝑠) = 𝒄𝑇(𝑠𝑰 − 𝑨)−1𝒃, where 𝑰 is the 𝑙 × 𝑙 
identity matrix. The second sensitivity function of concern, 
𝑆fb&ff, represents the transfer function between the same varia-
bles as in (1) but now including the feedforward control law: 

 𝑆fb&ff(𝑧) =  
𝐸(𝑧)

𝑃r(𝑧)
= 𝑆fb(𝑧)(1 − 𝑃(𝑧)𝐶ff(𝑧)), (2) 

where 𝐶ff(𝑧) is a transfer function representation of the feed-
forward control law 𝑢ff. 

Loop-shaping is performed on 𝑆fb&ff while demanding that 𝐶fb 
must stabilize the feedback control loop depicted in Figure 1 and 
imposing a stability robustness constraint on 𝑆fb. In particular, 

the loop-shaping requirement is set by a frequency-dependent 
upper bound on the magnitude characteristics of 𝑆fb&ff: 

 |𝑆fb&ff(𝑓)| ≤ 𝑊fb&ff(𝑓, 𝑓1),    ∀𝑓 ≤ 0.5/𝑇s,     (3) 

where 𝑓 is a frequency in hertz, 0.5/𝑇s is the Nyquist frequency, 
𝑊fb&ff ∈ ℝ is a frequency-dependent upper bound on the mag-
nitude of 𝑆fb&ff, and 𝑓1 is the frequency where 𝑊fb&ff = 1. The 
bound 𝑊fb&ff is specified by a control engineer as an array of 
data-points such as to cover all frequencies of interest for the 
desired performance of the motion control system considered. 
Since 𝑊fb&ff is an array of data-points, 𝑆fb&ff must be an array of 
data-points too; this is achieved by using the frequency response 
function (FRF) of the motion system, usually obtained by system 
identification, and by computing the frequency responses of 𝐶fb 
and 𝐶ff at the same frequency points as captured by the FRF of 
plant 𝑃. 

Stability of the feedback control loop can be checked and ver-
ified with a data-driven method in the frequency domain, e.g. 
using the Nyquist stability criterion [4]. 

The stability robustness constraint is imposed as a frequency-
dependent upper bound on the magnitude characteristics of 𝑆fb: 

 |𝑆fb(𝑓)| ≤ 𝑊fb(𝑓)    ∀𝑓 ≤ 0.5/𝑇s,     (4) 

where 𝑊fb is defined by a control engineer such as to ensure 
sufficient stability robustness of the feedback control loop de-
picted in Figure 1; a modulus margin of 2, which is a common 
stability robustness criterion, is achieved by imposing 𝑊fb(𝑓) ≤
2  ∀𝑓 ≤ 0.5/𝑇s. Like 𝑆fb&ff, 𝑆fb is represented by an array of 
data-points computed at the same frequencies as the FRF of 𝑃. 

The specific frequency 𝑓1 in (3) can be either specified by the 
control engineer or automatically tuned by the control software. 
In the former case, this frequency should be set such that a fea-
sible set of controller parameters exists for which the closed-
loop stability is guaranteed and the performance and robustness 
constraints in (3) and (4) can be satisfied. In the latter case, the 
algorithm for simultaneous tuning of 𝐶fb and 𝐶ff should aim at 
maximizing frequency 𝑓1, while ensuring closed-loop stability 
and accommodating constraints (3) and (4). 

In practice, 𝐶fb and 𝐶ff can be parameterized as discrete-time 
filters of desired orders. Below are the parametrizations consid-
ered at ASMPT: 

 𝐶fb(𝑧) =  
𝑈fb(𝑧)

𝐸(𝑧)
=

𝑎0+𝑎1𝑧+⋯+𝑎𝑚𝑧𝑚

1+𝑏1𝑧+⋯+𝑏𝑛𝑧𝑛
.     (5) 

 𝐶ff
∗(𝑧) =  

𝑈ff(𝑧)

𝑈ff
∗ (𝑧)

=
𝑐0+𝑐1𝑧+⋯+𝑐𝑝𝑧𝑝

1+𝑑1𝑧+⋯+𝑑𝑞𝑧𝑞
,   (6a) 

 𝑢ff
∗ (𝑘) =  𝛼1𝑝r(𝑘) + 𝛼2𝑣r(𝑘) + 𝛼3𝑎r(𝑘) 

                   +𝛼4𝑗r(𝑘) + 𝛼5𝑠r(𝑘),   (6b) 

where 𝑚 ≤ 𝑛 and 𝑝 ≤ 𝑞 are the necessary conditions for real-
izability of the feedback and feedforward filters, respectively, 
𝑈fb(𝑧), 𝑈ff(𝑧), and 𝑈ff

∗(𝑧) are the Z-transforms of 𝑢fb(𝑘), 𝑢ff(𝑘), 
and 𝑢ff

∗ (𝑘), respectively, and 𝑢ff
∗  is computed as a linear combi-

nation of components of the reference motion trajectory. Note 
that 𝐶ff in (2) is a function of 𝐶ff

∗  and 𝑢ff
∗  defined by (6a) and (6b), 

respectively. Since according to (3) the loop-shaping is per-
formed in the domain of frequencies in hertz, 𝐶ff needs to be 
expressed in hertz too. That is done as follows: 

 𝐶ff(𝑗𝑓) =  
𝑈ff(𝑗𝑓)

𝑃r(𝑗𝑓)
= [∑ 𝛼𝑘(𝑗2𝜋𝑓)𝑘−15

𝑘=1 ] 

                                        ∙ [𝐶ff
∗(𝑧)|𝑧=𝑒𝑗2𝜋𝑓𝑇s ], (7) 

where 𝑗 is the unit imaginary number, such that 𝑗2 = −1. 
In (5) and (6), parameters 𝑎0,…,𝑎𝑚, 𝑏1,…,𝑏𝑛, 𝑐0,…,𝑐𝑝, 𝑑1,…,𝑑𝑞 , 

and 𝛼1,…,𝛼5 are real-valued scalars that are simultaneously 



  

tuned by the control software such as to accommodate con-
straints (3) and (4), ensure stability in the closed-loop, and even 
maximize the value of 𝑓1. By maximizing 𝑓1, we can achieve a 
broader frequency range where the position error 𝑒 is attenu-
ated with respect to the reference position trajectory 𝑝r. Conse-
quently, the control bandwidth of the control system depicted 
in Figure 1 is maximized. 

In addition to a linear feedback filter (5), a nonlinear feedback 
control law can be engaged to improve trajectory tracking and 
settling control performance of the motion system. In particular, 
in this contribution we use a nonlinear resetting lag-filter, given 
in state-space representation by 

𝑅 ≔ {

𝑥̇𝑟(𝑡) = −𝜔𝑟,𝛼𝑥𝑟(𝑡) + 𝜔𝑟,𝛼𝑒(𝑡) if 𝑒(𝑡) ≠ 0,

𝑥𝑟(𝑡+) = 0                                      if 𝑒(𝑡) = 0

𝑦(𝑡) = 𝑥𝑟(𝑡),                                  

,    (8) 

with reset controller state 𝑥𝑟 ∈ ℝ and lag frequency 𝜔𝑟,𝛼 ∈

ℝ>0. If the input 𝑒 is non-zero, the nonlinear filter behaves like 
a linear lag-filter. However, when the input is equal to zero, the 
reset element instantaneously resets the value of its state to 
zero. According to a describing function analysis (see [6] for det-
ails), a resetting lag-filter can achieve similar magnitude-charac-
teristics as a linear lag-filter but with less phase lag. Therefore, 
as shown in [6], we can combine the resetting lag-filter with a 
linear lead-filter to obtain an element with a Constant Gain and 
Lead in Phase (CgLp), suggesting that we can break an inherent 
limitation of linear control: Bode’s gain-phase relationship [6]. 
Namely, although the magnitude-characteristics of this CgLp-el-
ement are close to 1 in the entire frequency-range, we obtain a 
phase lead starting from frequency 𝜔𝑟,𝛼. To localize the nonlin-

earity only around the bandwidth frequency (to achieve more 
phase margin), we use a slightly modified version of the CgLp-
element, as developed in [7]. Here, the linear lead-filter is re-
placed with a linear lead-lag filter, and a direct feed-through 
term (𝐷𝑟) is added to the resetting lag-filter, such that it behaves 
like a resetting lag-lead filter. In this manner we still obtain a 
CgLp-element, but the phase lead only appears in a certain fre-
quency-band (starting and ending at the lead and lag frequen-
cies, respectively). With this ‘free’ phase margin we can increase 
error suppression in certain frequency ranges where vibrations 
are visible in the error when using the linear feedback controller. 
In the next section, we illustrate the data-driven controller syn-
thesis method described above on an industrial use-case. 

4. Industrial case-study 

The simultaneous data-driven tuning of the feedback and 
feedforward controllers is illustrated on an ASMPT wire bonder. 
Figure 2 displays CAD drawings of this machine and its XYZ-mo-
tion platform. The wire-bonder makes movements at high 
speeds and accelerations to create, each second, multiple wired 
interconnections between a semiconductor die and its packag-
ing. The XYZ-movements demand a precision of several micro-
metres. Right after each movement, bonding of the wire takes 
place for which a sub-micrometre position accuracy is required. 

For confidentiality reasons, all data displayed in this section 
are normalized. In Figure 3, the magnitude and phase character-
istics of the plant FRF are given in blue, representing the transfer 
from the input current to the driver of the motor actuating the 
X-axis of the wire bonder, to the position measured along this 
axis. The dashed black lines represent a rigid-body fit to the 
measured FRF data, which is attained by manual fitting of the 
speed and acceleration gains based on the magnitude plot of the 
plant FRF, together with a time-delay in the feedback loop which 
is fitted on the phase plot. The dashed red lines represent the 

inverse of the feedforward control law which is computed by au-
tomated fitting of a feedforward filter of the 2nd-order (6a) and 
coefficients 𝛼2 and 𝛼3 of the rigid-body part (speed + accelera-
tion) of the feedforward function (6b), together with a time-de-
lay; the automated fitting is performed using the software of  
ASMPT. By inspection of the plots shown in Figure 3, one can 
observe that the ‘Rigid-body + 2nd-order filter fit’ captures both 
the rigid-body dynamics of the plant (below normalized fre-
quency 𝑓 ≅ 10−1) and it over-fits the first resonance frequency 
(at normalized frequency 𝑓 = 0.144). The reason for this over-
fitting will be clarified later using Figure 5. 
 

 
Figure 2. CAD drawing of an industrial wire bonder machine (on the left-
hand side) and its XYZ-motion platform (on the right-hand side). 
 

 
Figure 3. FRF measured on the X-axis of the wire-bonder and the para-
metric fits to be used for feedforward control. 
 

In Figure 4 we show the magnitude characteristics of sensitiv-
ity function 𝑆fb defined by (1), which incorporates the feedback 
controllers only. The blue plot represents 𝑆fb computed based 
on the measured plant FRF (shown in Figure 3) and a linear feed-
back controller computed by automated tuning of a 6th-order fil-
ter (5) using the software of ASMPT. The horizontal dashed line 
represents the upper-bound 𝑊fb, which imposes a limit of 6 dB 
on the peak magnitude of 𝑆fb, which corresponds to a modulus 
margin of 2 (the stability robustness criterion). The red plot cor-
responds to 𝑆fb computed using the same measured FRF and a 
nonlinear feedback controller; this controller contains the same 
6th-order filter, but we add the CgLp-element and two additional 
2nd-order filters. Each 2nd-order filter is targeted to decrease the 
sensitivity function in a certain frequency range, since the posi-
tion errors achieved using the linear feedback controller have 
dominant energy in these two specific frequency bands. The sen-
sitivity function 𝑆fb with the nonlinear feedback is computed us-
ing the first-order describing function representation of the re-
set controller (see [6] for details). Its magnitude characteristics 
show better suppression of the position errors in two bands of 

the normalized frequencies: between 510-3 and 1.110-2 and  

between 1.710-2 and 2.910-2. 
Magnitude plots of the sensitivity function 𝑆fb&ff defined by 

(2), which incorporates both the feedback and feedforward con-
trol laws, are shown in Figure 5. The blue plot corresponds to the 
case where the linear feedback controller (its |𝑆fb| is given by 
the blue plot in Figure 4) and the rigid-body feedforward control 
law (corresponding to the parametric fit given by the black 
dashed-line in Figure 3) are used. The red plot corresponds to 



  

the use of the reset-control feedback (its |𝑆fb| is given by the red 
plot in Figure 4) and the ‘Rigid-body + 2nd-order filter’ feedfor-
ward (corresponding to the parametric fit given by the red 
dashed-line in Figure 3). 
 

 
Figure 4. Plots of sensitivity function |𝑆fb| (without feedforward). 
 

 
Figure 5. Plots of sensitivity function |𝑆fb&ff| (with feedforward). 
 

The dashed black line in Figure 5 represents the frequency-de-
pendent upper bound 𝑊fb&ff on |𝑆fb&ff| depicted in red colour. 
This bound is set by the control engineer and its frequency value 
𝑓1 is maximized by automatic tuning using the optimization soft-
ware. To accommodate constraint (3) around the first resonance 
frequency of the plant (at a normalized frequency of 0.144), the 
2nd-order feedforward filter over-fits this resonance, as obser-
ved in Figure 3. This increases performance robustness against 
this resonance in the control system depicted in Figure 1. 

The two feedback & feedforward control designs are tested on 
the physical wire bonder machine in representative motion tasks 
that incorporate 6 motion distances (from short to long ones) 
performed in forward and backward directions (12 moves in to-
tal). The scaled reference position profiles are shown in black in 
Figure 6. The blue line represents the measured position error 
achieved using the linear feedback controller and the rigid-body 
feedforward. The red plot is the measured position error 
achieved using the feedback reset controller and the feedfor-
ward whose rigid-body part passes through the 2nd-order filter. 
The error plotted in red colour shows lower peak values than the 
error depicted in blue. 
 

 
Figure 6. Measured position errors. 
 

Better positioning accuracy using the simultaneously tuned 
nonlinear feedback and linear feedforward controller is verified 
by lower values of the root-mean-square (RMS) errors (normal-
ized ones) displayed in Figure 7. Besides for the shortest motion 

distance (moves 1 and 2), for all other moves the reset controller 
with rigid-body and 2nd-order filter feedforward significantly 
outperforms application of the linear feedback and the rigid-
body feedforward controllers. These improvements range from 
5.5 % (move 2) up to even 56 % (move 4). This illustrates the 
effectiveness of the ASMPT optimization software for auto-
mated tuning of feedback and feedforward control laws. 
 

 
Figure 7. RMS values of the measured position errors. 

5. Conclusions and outlook 

We developed a data-driven method for simultaneous tuning 
of nonlinear feedback reset controllers and linear feedforward 
filters. This method utilizes the loop-shaping control design in 
the frequency domain. Inputs of this methodology are the plant 
frequency response data obtained by system identification, the 
desired parameterisations of the feedback and feedforward con-
trol laws, and frequency-dependent bounds on the magnitude 
characteristics of the sensitivity functions, representing the 
transfer functions from the reference position trajectory to po-
sition error, without and with feedforward control laws incorpo-
rated. The outputs are automatically and optimally tuned feed-
back and feedforward controller settings. This framework is 
practically demonstrated by simultaneous tuning of feedback 
and feed-forward controllers for a motion axis of an ASMPT wire 
bonder machine. The resulting controllers outperform conven-
tional linear motion controllers in representative motion tasks 
up to even 56 % in terms of root-mean-square error values. In 
the future, this framework will be extended to simultaneous tun-
ing of feedback and feedforward control laws for systems with 
multiple inputs and outputs. Also, attention will be given to 
speeding up the optimisation algorithm. 
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