
 

          
 
 

 

euspen’s 25th International Conference & 
Exhibition, Zaragoza, ES, June 2025 

www.euspen.eu  

Novel hybrid AI-PID controller    
 
Johannes Degenhardt1, Ziyang Jiao1, Christian Kuhlmann1, Rainer Tutsch2, Gaoliang Dai1* 
  
1 Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany      
2 Institute of Production Measurement Technology, Technical University of Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany  
 
Gaoliang.dai@ptb.de 

  
Abstract 
In this study, we aim to explore the potential of artificial intelligence (AI) for servo control applications. The prevalent control scheme 
for such applications is the proportional integral differential (PID) controller. Although PID control is well-established and provides 
reliable operation, it does not achieve optimal performance, particularly under challenging conditions requiring rapid response. As a 
solution we realised an AI-based controller using Deep-Q reinforcement learning for a simulated Atomic Force Microscopy (AFM) 
application, where a servo control is needed to keep the tip-sample interaction constant. Our results showed that the AI-based 
control may exhibit four times better RMS control deviations than a PID rival. However, further investigations revealed a problem of 
the AI-based technique: lack of consistency and reliability. The AI may occasionally lose control, although being extensively trained. 
To solve this problem we propose the application of two hybrid AI-PID controllers and compare them on a real AFM system. Although 
this study is performed using an AFM as an experimental platform, we believe that the novel concept is of great value for many 
applications in the field of precision engineering as well. 
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1. Introduction 

Atomic force microscopy (AFM) employs control systems to 
maintain constant tip-sample interactions, which is critical for 
image quality, reducing tip wear and for avoiding potential 
damage. The proportional-integral-derivative (PID) controller is 
the standard for this task. While PID control provides reliable 
operation, it does not achieve optimal performance. 

In recent work we proposed artificial intelligence (AI)-based 
controllers for AFM [1]. In simulated measurements of a low 
noise AFM, such an AI controller was able to outperform the 
classical PID by enabling advanced control behaviours, reducing 
root-mean-square control deviations by a factor of four. 
Additionally, the AI showed an asymmetric response in critical 
situations where potential damage could occur, prioritizing 
safety over achieving minimal control deviations. 

While the results underscored the AI's potential to significantly 
enhance AFM performance and safety, reliability concerns of the 
AI remain a barrier. The "black-box" and approximative nature 
of AI makes it susceptible to occasional control failures and 
difficult to verify for reliability. To address the issue of the AI’s 
missing intrinsic reliability, we test two AI-PID hybrid control 
(HC) schemes, combining the performance of AI with the 
reliability of PID, which to our knowledge has not been 
investigated previously in real world. 

2. Hybrid Control Concept     

 This paper tests two concepts of a hybrid AI-PID control, the 
Backup and Cooperative Hybrid Control, depicted in Figure 1. 

1. Backup Hybrid Control (BHC): In this approach, primarily 
only the AI controls the system, with PID acting as a fail-
safe to take over in case of an AI failure, e.g. if the control 
deviation reaches predefined limits. This method allows 

the AI to operate at its full potential while maintaining 
reliability through an PID intervention. 

2. Cooperative Hybrid Control (CHC): In this approach, both 
AI and PID permanently contribute to the control signal 
by adding up their individual control outputs. This 
collaboration results in improved stability as the PID 
compensates for possible AI failures early. However, as 
there are always contributions from the non optimal PID, 
even if they are not required, overall performance is 
expected slightly decreased.  

These HC strategies have been previously explored using 
simulated measurements of the low-noise AFM [2]. While the 
BHC achieved on average and in the best cases higher 
performance, the CHC appeared to be preferable for practical 
applications due to more stable performance. Building on these 
results, both HCs are tested here on a real-world AFM.  

3. Experimental Setup and Implementation 

To evaluate the HC schemes in a practical context, we 
implemented both approaches on a novel interference 
measuring principle based AFM system (IM-AFM) [3]. This 
system, rather than the initially planned low-noise AFM, was 
chosen for implementation because its data processing is 
handled by a CPU (AMD Ryzen 7 1700X), which could also be 

Figure 1. Schematics of (a) the BHC and (b) the CHC concept. 
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utilized directly for training and inference of the AI, without any 
further hardware requirements. The experimental setup for 
realizing the HC concepts includes the IM-AFM, the HC and AI 
software and a sample topography for training and testing the 
AI/HC. 

 
3.1. Interference Microscopy AFM 

The IM-AFM integrates a contact AFM mode into an 
conventional surface measuring interference microscope (IM). 
In its AFM mode, an AFM cantilever is positioned in the IM’s 
optical path at the objective’s focus plane. The AFM tip 
movement is evaluated through the phase of the interference 
fringe on the AFM cantilever. The interference fringes are 
captured with a CMOS camera, with 3000 Hz frame rate. They 
are evaluated in a LabVIEW-based software on a PC, providing 
the current bending of the cantilever. To maintain a constant 
cantilever bending during AFM scans, control/motion signals are 
calculated for a 3-axis piezo stage (PI P-545), which operates in 
closed-loop with 800Hz communication frequency. 
 
3.2. AI/Hybrid Control Setup 

The hybrid control software and AI code is executed in 
TensorFlow Lite. It receives the current AFM control state via an 
UDP loopback link from the IM-AFM LabVIEW software and 
replies with calculated control commands.  

For realisation of the AI Double Deep Q-Learning is used, 
where an artificial neural network (ANN) is trained to predict the 
best possible action for a given (control-) state. The  ANN used 
for both HC approaches consists of an input layer with 40 
neurons receiving the latest 20 measured control deviations and 
the last 20 motion commands sent to the piezo stage, two 
hidden layers with 60 neurons each and tanh activation function, 
followed by an output layer with 61 neurons, representing 
equally distributed motion commands for the piezo stage z-axis 
in the range of ±6 nm for the CHC and ±7.5 nm for the BHC.  

The PID controller used for both approaches is by manual 
testing parametrised as P=0.3, I=0 and D=0.8. For the CHC the 
output motion command from the PID and the AI are 
permanently added and sent to the IM-AFM software, whereby 
the PID becomes dominant when the control deviation reaches 
±20 nm. For the BHC the AI soley calculates the motion 
command for the piezo stage as long as the control deviation is 
in the range of ±25 nm, otherwise the PID is used.  

 
3.3. AI Training 

For the training of the two AIs 10 µm profiles of a training 
topography are scanned with a speed of 5 µm/s. During each 
scan the AI choses the expectedly best available motion 
command for a given control state and sends this to the AFM. 
Afterwards a reward is calculated, which is larger the smaller the 
following observed control deviations are. This reward is stored 
in a buffer and used to train the ANN's prediction capability. This 
process is repeated 500 times before the training is stopped.   

 
3.4. Training and Testing Topography 

The training and testing of the HCs is performed on a 
manufacturing prototype of a chirp standard sample. In Figure 2 

(a) one of the training topography profiles can be seen. For 
testing this profile and the profile in Figure 2 (b) are scanned and 
the control deviations are recorded. 

4. Testing Results      

In Table 1 the root mean square (RMS) control deviations of 
three test scans of the PID control and the two HCs are given. As 
can be seen, the HCs outperform the PID noticeably, even if the 
outperformance is not as large as in previous simulations due to 
different dynamic behavior of the IM-AFM and a relatively large 
dead time of the piezo stage. Overall the BHC shows the best 
performance, except for the scan on the  topography in Figure 1 
(b), where the CHC has smaller control deviation. On this profile 
the BHC was slightly unstable, which resulted in an oscillation of 
the piezo stage movement and control deviations. This can be 
seen in Figure 3, where the control deviations of the two HCs are 
compared for a subsection of topography 2. 

 
Table 1. RMS control deviations in nanometer for different HC setups 
on the training topography (1) and test topography (2) 

 

5. Conclusion and Outlook      

The results of this study demonstrate that the fundamental 
findings from previous simulations can be reproduced on a real 
AFM. The CHC approach is particularly suited for practical 
applications, as it better combines the advantages of AI with the 
reliability of a PID. While this study represents only a preliminary 
test of the AI-PID HC concept for real-world measurement 
instruments, the results indicate that the concept could be of 
interest in other fields requiring precision control, opening 
avenues for broader implementation. 
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Topography:  PID / 
nm 

Cooperative 
control / nm 

Backup 
control / nm 

Topography 1 
5 µm/s 

5.51 4.65 4.41 

Topography 1 
8 µm/s 

9.69 7.64 7.34 

Topography 2 
5 µm/s 

3.73 3.10 3.92 

Figure 2. Topographies used for training (a) and testing (b) of the HCs. 

Figure 3. Instability/oscillation of the BHC compared to the more stable 
CHC during the scan of the test topography profile. 
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