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Abstract 
As  most  of  the  world  strives  for  improved  sustainability,  and  the  UK  works  towards  its  Net  Zero  2050  goals,  emissions  from 
manufacturing have a significant part to play. One potential method of improving the sustainability of manufacturing processes is to 
reduce the CO₂ equivalent (CO₂E) of the process. The CO₂E of a process can be reduced by using energy from renewable sources as 
these have a lower carbon intensity.   
The carbon intensity data of the UK electricity supply is published live, and a forecast is provided to predict the carbon intensity for 
the next 48 hrs. The carbon intensity score is based on weather prediction data. Historical and forecast weather data could therefore 
be used for predictive energy optimisation in manufacturing facilities. 
This paper looks to investigate if the carbon intensity forecast and weather data can be used to schedule manufacturing, so electricity 
is used when CO₂E is at its lowest. A methodology for capturing future predictive data was developed, using it to generate a predictive 
CO₂E for a given process. Based on this an algorithm was developed that suggests manufacturing time from carbon intensity forecast 
data and enables the forecast to be compared directly with the actual CO₂E data when the process is complete. Scenario testing was 
carried out using simulation to investigate when this would be applicable for manufacturers and when it would provide the most 
benefit. 
This work gives manufacturers the tools to examine the viability of scheduling manufacturing to minimise CO₂E of their processes 
and reduce energy costs. 
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1. Introduction   

In the UK energy production is split between renewable 
energy sources such as wind and solar power, and fossil fuel 
sources such as coal and gas. The power output of the renewable 
energy sources fluctuates based on weather conditions, so easily 
controlled energy sources such as gas-fired power stations are 
used to meet demand when renewable energy production is 
insufficient. As a result of this, the amount of Carbon dioxide 
equivalent (CO₂E) produced by an energy-intensive 
manufacturing process varies depending on weather conditions. 
CO₂E is a standardised measurement to understand the ‘Global 
Warming Potential’ of greenhouse gases, as defined by the 
Intergovernmental Panel on Climate Change (IPCC) of the United 
Nations [1]. The carbon intensity of energy produced from a mix 
of renewable and fossil fuel sources can be calculated to 
represent how many grams of CO₂E are released to produce a 
kilowatt hour of electricity. This can then be used to determine 
how much CO₂E is attributed to a manufacturing process which 
uses that electricity. Project Butterfly, funded by Made Smarter 
in 2022, developed a carbon intensity calculator which used 
material consumption and energy usage to determine the CO₂E 
of manufacturing processes [2]. From this work, it was 
determined that the carbon intensity of a manufacturing process 
could be predicted based on weather forecast data. 

This paper details the development and deployment of a 
machine learning model capable of predicting the carbon 
intensity of a manufacturing process based on weather forecast 
data. The model uses publicly available weather forecast data to 
determine how much power renewable energy sources will 

contribute to the grid over the next 48 hours and generates a 
time dependant value for carbon intensity during that period. 
The program can be used to schedule a manufacturing process 
(defined by its power consumption and duration) within the next 
48 hours to minimise the CO₂E produced by the execution of the 
process. 

Section 2 describes the software development process for the 
carbon intensity prediction. Details are given on how the data 
used for training and testing the program was cleaned and 
formatted prior to the training of the model, and how additional 
features were generated from the data to improve the quality of 
the prediction. The process of exploratory data analysis which 
was used to gain insights into overall trends in the data is also 
described. Some representative predictions of the model are 
analysed and used to compare the prediction quality from 
different data sources. Section 3 describes how results from the 
prediction model can be used in discrete event simulations (DES) 
to schedule more complex manufacturing processes for minimal 
CO₂E production across multiple machines and processes. 
Section 4 discusses the results of the discrete event simulations 
and compares simulations which prioritise sustainability with 
those that prioritise production rate. 

2. Methodology      

This section provides an overview of the methodology used to 
build a carbon intensity prediction model based on weather and 
irradiance data. It describes the development of two prediction 
models using different data sources with varying sizes and 
qualities. After evaluating their performance, the most stable 
model was selected as the best choice for further use.  
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2.1. Data collection and processing 
The data collection step involved the acquisition of both 

historical and forecast data, ensuring that they contain similar, 
aligned variables. Historical data was targeted for acquisition 
over a period of at least two years to ensure that the prediction 
model could capture the seasonality of the data. The national 
historical carbon intensity dataset was available for free 
download from the National Energy System Operator (NESO) 
covering the period from January 1, 2009, to the present [3].  

Midas Open is the open data version of the Met Office 
Integrated Data Archive System (MIDAS), containing weather 
and global irradiance observations dating back to 1853 [4]. The 
dataset has inconsistencies due to the historical nature of the 
data. For this project, the latest version available at the time—
v202308—was used, with weather data from Heathrow, London 
from 2019 to the end of 2022. Forecast weather data was 
requested daily from the Met Office DataHub Atmospheric 
Model for Heathrow, London, to align with the historical Midas 
Open weather data [5]. Accurate and comprehensive historical 
irradiance and weather data were downloaded from SolCast for 
the available station in Birmingham, England, covering the 
extended period from 2007 to 2024 [6]. This dataset offers 
greater consistency and accuracy compared to Midas Open, as it 
spans a longer, uninterrupted timeframe. To align with the 
SolCast historical data, forecast irradiance data and forecast 
weather data were requested daily from SolCast and Met Office 
Site Specific APIs respectively. 

Renewable quarterly electricity capacity and generation 
statistics were acquired from the Department for Energy 
Security and Net Zero, covering the period from 2010 to the 
second quarter of 2024. Estimates for the third and fourth 
quarters of 2024 were calculated using the percentage change 
from the same quarters in 2023 [7]. 

The units for historical weather and radiation observations 
were converted to ensure consistency with the forecast data 
units; for example, air temperature was converted from Celsius 
to Kelvin. The units of the historical weather observations were 
aligned with the Met Office Site-Specific forecast weather data, 
while the units of the historical irradiance data were matched 
with those of the SolCast irradiance forecast data. 

 
2.2. Feature Engineering 

The weather, energy capacity, and carbon intensity datasets 
were merged based on datetime, resulting in two datasets for 
prediction model training: 

Dataset 1 – Met office: Midas Open historical weather and 
radiation data, quarterly energy trends statistics, and carbon 
intensity datasets for the period from 2019 to 2023. 

Dataset 2 – SolCast: SolCast historical weather and radiation 
data, quarterly energy trends statistics, and carbon intensity 
datasets for the period from 2010 to the second quarter of 2024. 

For the first set, the available raw weather features that 
aligned with the corresponding forecast data included wind 
speed, wind direction, gust speed, total global radiation, air 
temperature, total cloud cover, visibility, mean sea level 
pressure, dew point temperature, relative humidity, and station 
pressure.  

For the second set, the available raw weather features that 
aligned with the corresponding forecast data comprised wind 
speed, wind direction, air temperature, azimuth, cloud opacity, 
dew point temperature, diffuse horizontal irradiance (dhi), 
direct normal irradiance (dni), global horizontal irradiance (ghi), 
precipitation rate, relative humidity, and zenith. 

These native features were engineered to create additional 
variables capturing interactions between wind speed and air 
temperature, temperature differences between air and dew 

point, and the squared wind speed to help the model better 
understand the relationships between weather observations 
and carbon intensity. 

 

 
Figure 1. Carbon intensity and energy generation trends in the UK 

between 2010 and 2024. 
 
The cyclical nature of features such as wind direction and time, 

was represented by calculating their sine and cosine values, 
which were added as new features to assist the model in 
capturing cyclical trends in the data. This is supported by cyclical 
behaviours in the historical data, which includes annual, 
monthly, weekly, and daily fluctuations in carbon intensity. 

The quarterly energy trends statistics, which capture the 
increasing trend of renewable energy sources, were 
incorporated as features. This includes installed capacities for 
wind and solar energy generation, as well as the percentage of 
their load factors and shares of generated electricity. 
Some exploratory data analysis was conducted to gain an in-
depth understanding of the data, its structure, patterns, and the 
relationships between variables through visualisation. Overall, 
there is a downward trend in carbon intensity over time, driven 
by a reduction in coal usage and the increasing adoption of low 
and zero-carbon energy generation sources, as shown in Error! 
Reference source not found.. This trend is further reinforced by 
the growth in installed wind and solar capacities and their 
increasing share in energy generation over time.  
 



  

2.3. Building the Prediction Model 
A regression algorithm from the open-source XGBoost library 

was selected to build the prediction model for both datasets: 
historical data from SolCast and Met Office [8]. The Gradient 
Boosting Tree Regressor was chosen for this project due to its 
effectiveness in handling continuous prediction tasks, its ability 
to manage complex relationships in the data, and its high 
performance in various regression scenarios, including time-
series forecasting of carbon intensity. XGBoost also 
automatically handles missing values without requiring explicit 
imputation during the data preprocessing stages.  

For the SolCast dataset, the training set includes records from 
2010 to 2021, while the testing set consists of data from 2022 to 
2024, representing approximately 17% of the data for testing 
and 83% for training. The Met Office dataset was split similarly, 
with the training set covering the period from 2019 to 2021 
(75%) and the testing set covering 2022 (25%), ensuring that the 
testing part includes at least one full year. 

To avoid overfitting and to ensure the model generalises well 
and performs accurately on new data, a technique called time 
series cross-validation was used. At each step, the model’s 
performance was evaluated using mean squared error to 
provide insights into how well the model generalises across 
different time periods and performs on new, unseen data. 

For this project, an automated hyperparameter optimisation 
framework—Optuna, which is based on Bayesian optimisation—
was used across the time series cross-validation folds.  

Hyperparameter tuning for the XGBoost Regressor model was 
conducted using time series cross-validation iterations on both 
datasets: SolCast and Met office. At the end of this process, 
models with optimal hyperparameters that performed best 
according to the chosen objective—mean squared error—were 
selected. The SolCast dataset spans a longer period, allowing the 
model to capture yearly trends, and the increasing energy 
statistics of wind and solar installed capacities over time, which 
balance out the overall decreasing carbon intensity trend. 

The best models from both datasets were evaluated on their 
respective test sets. Predictions based on the SolCast data 
showed a stronger correlation with actual carbon intensity 
values, with the model achieving a higher R-squared score of 
0.14. This indicates that the model explains 14% of the variance 
in the data. In contrast, the Met model’s R-squared score is 
negative, suggesting it performs worse than a simple mean-
based model. Both models exhibit relatively similar results in 
terms of root mean squared error (RMSE). The model built on 
Met Office’s data exhibits instability, with performance 
degrading over time. In contrast, the SolCast model's 
performance measures, while showing slight variation, remain 
generally stable. Consequently, the model trained on SolCast 
historical data was selected for scheduling manufacturing 
processes based on carbon predictions from weather forecasts. 

The resulting model was capable of predicting the carbon 
intensity of energy production within the next 48 hours. The 
correlation between the predicted carbon intensity trend and 
the actual values was 0.79, showing a strong correlation 

between the two. Figure 2 shows a representative seven day 
period which demonstrates the accuracy of the carbon intensity 
prediction. Particularly the models capacity to predict the 
maxima and minima in carbon intensity as a function of time. 
This is of particular interest when scheduling manufacturing 
processes, as it means that the model can identify the best and 
worst times to use a machine with regards to sustainability. 
Given the power consumption of the machine, this information 
can then be used to calculate the potential CO₂E reduction if the 
manufacturing process were scheduled to prioritise 
sustainability. 

3. Discrete Event Simulation 

A Discrete Event Simulation (DES) model was developed using 
AnyLogic software to examine the relationship between 
makespan (the time taken to complete a set of jobs in a 
manufacturing process) and carbon emissions in manufacturing 
scheduling. The primary objective was to evaluate the 
differences between the scheduling goals of minimising either 
parameter. 

The DES model, shown in Figure 3, represents a sequential 
three-stage manufacturing process. Jobs may queue in 
unlimited capacity buffers before each stage. By varying the 
release times of jobs at each stage, different scheduling 
scenarios can be simulated. The simulation was run over 48 
hours, corresponding to the prediction timeframe for carbon 
intensity (as detailed in section 2), which is a necessary input to 
estimate the carbon emissions of the process. 

Synthetic data generation was employed initially, with 
variations in machine power consumption and carbon intensity 
sequences. This approach aimed to determine the influence of 
these inputs on the relationship between the two outputs. Job 
cycle times across the three processes were fixed at three hours 
and three jobs were to be scheduled. The research questions 
addressed in this phase were:  

R1.1 What is the distribution of makespan and carbon 
emissions under varying power consumption and carbon 
intensity predictions? 

R1.2 Are there specific trends or relationships between the 
two? 

The second phase of the work focused on a real-world use case 
involving melding, cutting, and machining processes.  Machine 
power consumption and job cycle times were derived from 
collected machine data. As in phase 1, three jobs were to be 
scheduled in a 48 hour period. The research questions were: 

R2.1 What are the distributions of makespan and carbon 
emissions, randomising job scheduling for each simulation run? 

R2.2 What is the minimal carbon emission achievable, and 
what is the corresponding makespan?  

R2.3 What is the minimal makespan achievable, and what are 
the associated carbon emissions? 

Figure 2. Carbon intensity over time as predicted using the SolCast model (blue), and the Met Office model (red). Actual carbon intensity values are 
overlaid for comparison. 



  

 

4. Results 

Results for the first phase of DES modelling work looked at the 
relationship between makespan and carbon emissions for an 
array of simulated manufacturing processes, varying the relative 
power consumption of the three processes for each simulation. 
Makespan distributions remained consistent across scenarios, 
while carbon emissions converged toward the average as the 
standard deviation of machine power consumption increased. 
For example, lower standard deviations result in evenly 
distributed emissions. In contrast, higher standard deviations 
yield narrower emission ranges. Despite these distinct patterns, 
no significant relationship emerges between the two output 
variables. 

Results for the second phase of DES modelling demonstrated 
similar behaviours when using real-world machine data. Using 
collected machine data to simulate a manufacturing process 
involving 3 machines, 7.2 hours of machine time, and consuming 
a total of 578.7kWh of electricity. The analysis revealed a slightly 
positive correlation between makespan and carbon emissions, 
with reductions in makespan generally accompanied by lower 
carbon emission across most carbon intensity sequences. A 
visual example is provided in Figure 4.  

 

 
Figure 4. Frequency of simulation runs by makespan and carbon 
emissions, randomising job scheduling.  

Regarding the two remaining research questions, Table 1 
summarises the minimum makespan and carbon emission 
achieved under different optimisation objectives.  
Table 1. DES results minimising both carbon emissions and makespan. 

Objective Emissions (kg CO₂E) Makespan (hours) 

Min (CO₂E) 81.10 20.0 

Min (Makespan) 85.84 17.2 

 
These results demonstrate that  scheduling this manufacturing 

process to minimise CO₂E emissions reduced them by 4.74kg. 

Prioritising the sustainability of the process also created a 
production schedule which was close to the minimum makespan 
for this process.  

5. Conclusions 

The work described in this article demonstrates the 
development and application of a manufacturing scheduling 
model which minimises CO₂E emissions for a given process 
based on weather forecast data. The development and testing 
of the prediction model has been described, along with results 
of data analysis which showed trends in historical carbon 
intensity. This was factored into the model, along with the 
observed periodicity of the data. The resulting prediction model 
proved capable of predicting the optimal time within the next 48 
hours to execute a process in order to minimise CO₂E emissions.  

The prediction model was then used as part of a DES model to 
investigate how it could be used to schedule a more complex 
manufacturing process involving multiple machines. These 
simulations revealed positive relationship between the 
makespan and the carbon emissions of the manufacturing 
process, indicating that minimising carbon emissions would also 
create a process schedule with a short makespan. This has 
shown that the use of manufacturing scheduling based on 
Carbon intensity has the potential to reduce CO₂E of 
manufacturing processes. However, further validation on real 
world manufacturing datasets is required to fully understand the 
impact. 
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