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Abstract 
Coherence  scanning  interferometry  (CSI)  is  an  optical  technique  for  measuring  surface  topography.  However,  it  is  sensitive  to 
environmental noise and vibration. This research integrates a machine learning algorithm with a physical model to enhance the rob
ustness and accuracy of surface reconstruction in CSI. We developed a convolutional neural network-based physical model (CNNP) t
hat  combines  the  strengths  of  CNNs  with  the  Hilbert  transform  (HT)-envelope  method,  a  well-known  surface  reconstruction 
technique based on the envelope peak detection. By employing the HT within a machine learning framework, we improved noise ha
ndling in CSI data. Our experiments used simulated CSI data for a sinusoidal and a rectangle grating profile with random noise, achie
ving mean squared error results with the CNNP method that were an order of magnitude lower than those obtained using the HT-en
velope method alone. This approach demonstrates an enhancement over conventional physics-based methods, illustrating the effec
tiveness of integrating machine learning with physical principles in reducing the effect of noise in CSI processing. 
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1. Introduction 

Coherence scanning interferometry (CSI) has enabled precise 
and accurate measurements of surface topography [1]. As 
industries ranging from semiconductor manufacturing to 
biomedical devices increasingly rely on ultra-precise 
components, the demand for accurate surface characterisation 
under various environmental conditions has become critical. 
However, the sensitivity of CSI data to environmental noise and 
vibrations presents a significant challenge. 

CSI employs localised interference fringe patterns to derive 
surface height maps using surface reconstruction methods [2]. 
While effective under controlled conditions, some methods face 
limitations in noisy environments, a common scenario in 
practical applications. It is not always feasible to use strict 
environmental controls or complex hardware setups for noise 
reduction. 

Machine learning (ML) introduces an additional paradigm in 
optical metrology, providing powerful tools for handling 
complex and noisy data [3]. Traditional data mining techniques 
have been utilised for signal processing [4,5]. However, recent 
research has demonstrated that ML can enhance the accuracy 
of measurement results by effectively reducing noise. 
Nonetheless, relying solely on ML often lacks integration with 
the domain-specific knowledge that is crucial for ensuring the 
reliability and interpretability of the results. 

This research introduces a surface reconstruction approach 
that integrates a ML model, a convolutional neural network 
(CNN), with a physical model, the Hilbert transform (HT) 
envelope-based model to enhance noise reduction in CSI. This 
CNN-based physical model (CNNP) leverages the strengths of 
both data-driven and physics-based methodologies, offering a 
reduction to the impact of environmental noise in CSI. The 

integration of CNN with HT, a method used for envelope 
detection through signal processing techniques, promises to 
maintain high accuracy even in low signal-to-noise ratio (SNR) 
environments. 

2. Method      

The objective of this study was to integrate a CNN with a 
physical modelling approach to enhance the noise reduction 
capabilities in CSI. This integration aimed to combine the robust, 
data-driven capabilities of ML with the precision of the 
established HT envelope-based method. The methodological 
approach was divided into several key components as described 
below. 
   
2.1. Model design 

The core of our methodology involved the design and 
implementation of a CNNP. This model combined the 
architectural strengths of CNNs for feature extraction with  HT 
for envelope peak detection in CSI signals. The CNN architecture 
was designed to handle the interference fringe patterns 
observed in CSI data. The CNN comprised several convolutional 
layers followed by batch normalisation layers to process the 
signals effectively. 

 
2.2. Hilbert transform integration      

In the HT method, the fast Fourier transform (FFT) is used to 
convert the signal into its spatial frequency components. The 
coefficients corresponding to negative frequencies are set to 
zero, and the inverse FFT is then performed on the positive 
frequency components to reconstruct the envelope [6]. HT is 
applied to the outputs of the CNN layers to obtain the envelope 
of the fringe patterns. 
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Figure 1. Visualisation of simulated CSI signal data with added noise, 
along with corresponding envelope detection and surface 
reconstruction for a sinusoidal profile. The sinusoidal profile spans 
50 µm along the x-axis with 0.1 μm-1 spatial frequency and 1 μm 
amplitude, featuring a noise level with an SNR of 20 dB. (a) Intensity map. 
(b) A randomly selected intensity signal along the z-axis at x = 25.8 µm. 
(c) Comparison between the denoised intensity profile, obtained using 
the CPNN from (b), and the original intensity profile. (d) Envelope 
detection MSE results comparing the benchmark with those achieved 
using the CNNP (1.241 × 10-2 μm2) and the HT (6.444 × 10-1 μm2) methods. 
(e) Surface reconstruction MSE results comparing the benchmark with 
those achieved using the CNNP (5.015 × 10-3  μm2) and the HT (5.219 × 
10-2  μm2) methods. 

 

3. Experiment 

To evaluate the effectiveness of the CNNP model, we utilised 
simulated CSI signal data representing a sinusoidal and a 
rectangle grating profile with a spatial frequency of 0.1 μm⁻¹ and 
an amplitude of 1 μm. Noise was randomly added to these 
signals to simulate real-world measurement conditions, with a 
range of SNRs from 30 dB to 10 dB. This comparison was 
performed across the different noise levels specified, providing 
an understanding of the model's robustness and accuracy in 
noise reduction. The MSE of heights of the reconstructed profile 
using CNNP is an order of magnitude smaller than that of the HT 
method alone in Figure 1 and Figure 2.  
 

4. Conclusion      

We introduced a CNNP that combines ML with the HT method 
to improve the robustness and accuracy of surface 
reconstruction from noisy data. 

Our findings demonstrate that the integration of ML with the 
HT-envelope method enhances the accuracy of surface 
reconstruction in CSI under noisy conditions when it has been 

tested by two kinds of geometries. The combination of CNNs 
with the physical principles of the HT method reduces the impact 
of environmental noise and low SNRs, crucial for applications 
requiring precise surface measurements in uncontrolled 
environments. 
 

 
Figure 2. Visualisation of simulated rectangle grating profile. (a) 
Intensity map. (b) A randomly selected intensity signal along the z-axis 
at x = 24.85 µm. (c) Comparison between the denoised intensity profile, 
obtained from (b), and the original intensity profile. (d) Envelope 
detection MSE results comparing the benchmark with those achieved 
using the CNNP (8.647 × 10-3 μm2) and the HT (6.397 × 10-1 μm2) methods. 
(e) Surface reconstruction MSE results comparing the benchmark with 
those achieved using the CNNP (3.785 × 10-3  μm2) and the HT (5.11 × 10-

2  μm2) methods. 
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