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Abstract 
Vibration monitoring in machine tools is essential for ensuring precision and quality in industrial manufacturing. However, vibration 
sensors, including both general-purpose and MEMS-based sensors integral to Industrial Internet of Things (IIoT) systems which offer 
compact and cost-effective solutions for continuous monitoring, are prone to residual errors that persist even after application of 
systematic compensation and calibration techniques. These errors can degrade the accuracy of predictive maintenance and quality 
control systems, which are vital in the era of Industry 4.0 and smart manufacturing. This research investigates various filtering 
techniques to minimize these residual errors, with a focus on their applicability to the non-stationary and complex vibration signals 
typical in machine tool environments. Several adaptive filtering methods, including Savitzky-Golay (SG), Wiener filtering, Wavelet 
denoising, Adaptive Recursive Least Squares (RLS), and Kalman Filtering (KF), were evaluated using a simulated dynamic noisy 
vibration signal representative of an industrial CNC machine. The evaluation criteria included Signal-to-Noise Ratio (SNR) 
improvement, Mean Squared Error (MSE), and convergence time, ensuring real-time suitability for practical industrial applications.  
Extensive Monte Carlo simulations were conducted to compare the effectiveness of these techniques in reducing noise and improving 
signal estimation accuracy. Significant differences were observed in their ability to manage the non-linear and non-stationary 
characteristics of machine tool vibrations. Advanced Kalman filtering techniques, in particular, showed potential for processing non-
linear systems in vibration signal processing. The findings contribute to the field of precision engineering by offering a comprehensive 
comparison of filtering techniques and proposing advanced methods for residual error compensation in vibration sensors. This work 
has important implications for enhancing measurement accuracy, machine tool performance, and quality control in industrial 
manufacturing, while also improving IIoT-based condition monitoring and more precise predictive maintenance strategies, and 
overall optimization of smart manufacturing processes as they are dependent on high quality sensing. 
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1. Introduction 

In the era of Industry 4.0, precision manufacturing increasingly 
depends on advanced vibration monitoring systems to uphold 
the stringent accuracy requirements of modern machine tool 
metrology [1]. These systems are essential for ensuring product 
quality and operational stability in smart manufacturing [2]. 
However, vibration sensors—particularly general-purpose and 
MEMS-based sensors integrated into Industrial Internet of 
Things (IIoT) frameworks—remain susceptible to residual errors  
that persist even after systematic calibration and compensation 
[3, 4]. These errors compromise measurement accuracy and 
hinder the implementation of robust predictive maintenance 
and quality control strategies critical to high-precision 
manufacturing environments. 

Vibration sensors inherently experience both deterministic 
and stochastic error sources [5]. Deterministic errors, such as 
offset biases, scale factor deviations, and cross-axis sensitivity, 
are typically addressed through well-established calibration 
protocols [4]. In contrast, stochastic errors, including hysteresis, 
drift, and environmental noise, demand more sophisticated 
compensation methods [6]. Residual uncertainties—defined as 
the errors persisting post-calibration—present significant 
challenges for achieving the sub-micrometre precision required 
in contemporary machine tool operations . These residual errors 

can arise from various sources, including environmental factors, 
thermal deformation, and limitations in measurement methods. 
Such inaccuracies can adversely affect IIoT-enabled condition 
monitoring systems . 

Recent advancements in signal processing have provided 
promising approaches to mitigate these challenges [7]. 
Traditional techniques, including Empirical Mode 
Decomposition (EMD) and Principal Component Analysis (PCA) , 
have demonstrated utility in noise reduction . However, their 
performance often diminishes when applied to the dynamic and 
non-stationary vibration signals characteristic of machine tool 
environments. This necessitates the development and 
evaluation of advanced filtering strategies capable of addressing 
these complexities. Methods such as Savitzky-Golay (SG) 
filtering [8], Wiener filtering [9], Wavelet denoising , Adaptive 
Recursive Least Squares (RLS) [10], and Kalman Filtering (KF) [11] 
offer potential for improved residual error mitigation, 
particularly in dynamic operational scenarios. 

This research systematically investigates these advanced 
filtering techniques using simulated noisy vibration signals based 
on experimental data from industrial CNC machines. 
Performance metrics, including Signal-to-Noise Ratio (SNR) 
improvement, Mean Squared Error (MSE), and convergence 
time, are utilized to evaluate their efficacy [12]. The analysis is 
supported by extensive Monte Carlo simulations, providing a 
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robust comparative framework to determine their suitability for 
real-time industrial applications . 

The results of this study contribute to the domain of machine 
tool metrology by addressing the critical issue of residual error 
compensation in vibration sensors. By enhancing measurement 
accuracy and reliability, this research supports the evolution of 
IIoT-based predictive maintenance and quality control solutions 
[13], thereby reinforcing the foundational principles of smart 
manufacturing and advancing the capabilities of next-
generation precision manufacturing systems [14]. 

 
2. Comparison of Filtering Techniques for Sensor 

Compensation 

Previous research has shown that vibration sensors are 
susceptible to both internal and external noise, which cannot be 
fully eliminated through calibration or compensation alone [3, 
15]. In instrumentation and sensors, noise, comprising intrinsic 
and extrinsic elements, remains a challenging and expanding 
area requiring ongoing research. 

While sensor calibration minimizes systematic errors, noise 
persists post-calibration due to the complex nature of 
measurement systems. Comprising components such a sensing 
elements, pre-amplifiers, cabling, and a data acquisition 
systems, in the sensor measurement chain also exhibit an 
inherent noise in addition to external noise sources [5]. 
Mathematically it can also be shown that for the vibration 
output (𝑥𝑚𝑒𝑎𝑠(𝑡)) is actually sum of actual signal of vibration 
(𝑎𝑡𝑟𝑢𝑒(𝑡)) and noise (𝑛(𝑡)), as shown in equation below  

𝑥𝑚𝑒𝑎𝑠(𝑡) = 𝑎𝑡𝑟𝑢𝑒(𝑡) + 𝑛(𝑡)  (1) 
Here 𝑛(𝑡) represents the residual noise component which is a 

major source of residual error. Therefore selection of an 
appropriate filtering or estimation technique should provide 
adequate coverage for practical machine tool scenarios while 
improving sensor response [16] through the reduction of 
computed residual error. The residual error or noise in this 
research is assumed to be Gaussian in nature, as described by its 
noise variance value, which can then be used to estimate its 
intrinsic error value . 

Therefore in order to improve sensor response in vibration 
monitoring, a thorough evaluation and comparison of various 
digital filtering methods is essential. However, several 
considerations must be addressed prior to evaluation. Vibration 
signals in machine tools are often complex due to the interaction 
of various subsystems, and the noise characteristics can change 
with different operational modes of the machine. Consequently, 
filtering techniques must be designed to effectively reduce noise 
variance and residual errors, enabling real-time signal 
enhancement for practical machine vibration monitoring [16, 
17]. 

3. Methodology for Filter Implementation and Selection 

In principle, applying a filter that suppresses noise while 
leaving the signal relatively unchanged is a common method for 
estimating a signal corrupted by residual noise (both 
deterministic and stochastic) [7]. The bandwidth of measured 
vibration signals and noise in machine tools is typically shared 
with the induced effect of the background noise as well, which 
makes it difficult to eliminate the noise [18, 19]. Active fixed 
filters, such as Notch, Sallen-Key, and Butterworth filters, for 
example, cannot be used in this scenario because their design 
relies on prior knowledge of both the signal and the noise [7]. 
Therefore, to deal with the unknown signal estimation problem, 
adaptive filters must be used for noise reduction [9]. 

Adaptive filters have the ability to adjust their own parameters 
automatically , and their design requires little or no knowledge 

of signal or noise characteristics [9]. In fact, practically all 
adaptive filters do require the use of initial signal noise spectrum 
samples for initialization and convergence i.e. optimal 
minimization of mean squared error (MSE). Moreover, they also 
have a better signal-to-noise (SNR) performance ratio when 
compared to fixed filters within the same working conditions [7]. 
In brief, adaptive filters can be understood as self-designing 
filters operating recursively on the noisy signal within unknown 
signal characteristics [20].  

Adaptive filtering utilises a primary signal, which contains the 
corrupted signal, and a noise reference source. It is assumed that 
the estimated noise is correlated to the actual noise in some 
unknown way. The goal of the adaptive filter is reducing noise 
variance in the measured signal. The block diagram of adaptive 
noise cancelling filter can be seen in Figure 1. The [𝑘] notification 
represents a sampled version of signal described by Equation 1. 
Mathematically the adaptive filter produces an output 𝑛𝑒𝑠𝑡[𝑘] 
with the overall filter system output being the error signal 𝑒[𝑘] 
as in Equation 2, minimized recursively by the adaptive 
algorithm. 

𝑥𝑒𝑠𝑡[𝑘] = 𝑥𝑚𝑒𝑎𝑠[𝑘] − 𝑛𝑒𝑠𝑡[𝑘]  (2) 
 

 
 
Figure 1. Block diagram of an adaptive noise filter 
 
With the aim to improve response of vibration sensors for 

machine tools several active denoising and adaptive filtering 
algorithms were reviewed for application. Few of the 
noteworthy methods explored included Savitzky-Golay (SG) [8], 
Wiener filtering, Wavelet denoising [16], Adaptive Least Mean 
Squares (LMS) [10, 21] , Adaptive Recursive Least Squares (RLS) 
[7, 10], Kalman Filtering , etc. Many factors influence the 
selection of an appropriate adaptive filtering algorithm, 
including computational efficiency, robustness, tracking, rate of 
convergence, and numerical implementation [20]. Another 
aspect that must be addressed by filtering algorithm is an 
efficient response to non-stationary machine tool vibration 
signals as well i.e., variation in signal amplitude, frequency , 
noise etc. Adaptive filters are suitable for this as they are not 
only able to remove noise from unknown signals but also predict 
future values of a steady state, slowly varying or periodic signals 
in real-time. 

To evaluate the performance of the filters [22], 
implementation was done using a simulated dynamic noisy 
vibration signal generated based on experimental observations. 
The signal was modelled as a sinusoidal wave with an amplitude 
of 𝐴 = ±1 𝑔 and frequency of 𝑓 = 135 𝐻𝑧 (8100 𝑅𝑃𝑀) 
sampled at a rate of 𝑓𝑠 = 1500 𝐻𝑧. A Gaussian or white noise 
was added to the signal with a noise variance of 𝜎 = 0.5 𝑔. The 
frequency of the signal was chosen to represent a value close to 
the highest spindle RPM of the three-axis Cincinnati Arrow 500 
machine tool on which the validation is intended, while the 
sampling rate was chosen to be close to the nominal rate of the 
investigated MEMS vibration sensors. A section (𝑡 = 0.25 sec) 
of the generated reference signal with and without noise can be 



 

seen in Figure 2. The reference signal is represented by a solid 
red line, while the noisy signal is represented by a dot-dash blue 
line. The results from the implementation of the filters are 
presented in the next section of the research paper. 

 
Figure 2. Simulated noisy signal for filter comparison and selection 

 

4. Results and Discussion  

Adaptive filters work in applications by adjusting their 
coefficients with the goal of achieving an optimal state. When 
the mean square of the error signal between the adaptive filter 
output and the desired signal converges to the minimum value , 
the optimization criterion is satisfied. Resultantly at this state, 
the filter is adapted, and the coefficients have converged to a 
solution. The filter output, 𝑥𝑒𝑠𝑡[𝑘], is then said to match very 
closely to the desired signal, 𝑎𝑡𝑟𝑢𝑒[𝑘]. Potentially any change in 
input data characteristics, such noise , amplitude and frequency 
of the signal, the filter adapts to the signal characteristics by 
generating a new set of coefficients for the new data [20]. 

Savitzky-Golay (SG), Wiener filtering, Wavelet denoising, 
Adaptive Recursive Least Squares (RLS) [7, 10] and Kalman 
Filtering (KF) methods were applied to compare their 
performance on the simulated signal described in section 3. In 
order to compare the effectiveness of filter in terms of signal 
quality before and after denoising, a quantitative performance 
evaluation index i.e. signal-to-noise ratio (SNR) is introduced to 
evaluate the denoising effect, which is defined as follows 
(Equation 3) [16], where 𝑥𝑚𝑒𝑎𝑠(𝑖) is the measured vibration 
signal , 𝑛(𝑖) is the additive noise component to 𝑎𝑡𝑟𝑢𝑒(𝑖) true 
vibration signal, and 𝑁 is the signal length : 

𝑆𝑁𝑅 = 10 log
∑ 𝑥𝑚𝑒𝑎𝑠

2 (𝑖)𝑁
𝑖=1

∑ 𝑛2(𝑖)𝑁
𝑖=1 

  (3)  

The optimal filter parameters for investigated filters were set 
according to reviewed literature describing similar experimental 
evaluations for example Savitzky-Golay (SG) requires setting of 
order filter and window length. Similar approaches were 
followed for Wiener filtering, Wavelet denoising , Adaptive 
Recursive Least Squares (RLS) and Kalman Filtering (KF). 
However, it is important to highlight that choice for optimal 
parameters for adaptive filters are a sprawling research area and 
requires due consideration of the specified applications and 
further investigation. 

To evaluate the performance of filters, 𝑁 = 1000 Monte Carlo 
type simulations were run in MATLAB to generate simulated 
signals with random noise, while recording the SNR of filtered 
signals. The stability of filter performance was evaluated by 
computing the standard deviation in the resulting SNR results. 
The results of the evaluation have been tabulated in Table 1. 
Overall filter performance was evaluated by means of evaluating 
the greatest SNR improvement percentage, along with the 
lowest MSE value and convergence time for executing the 
algorithm. SNR improvement demonstrates the ability of the 
filter to remove residual noise, while MSE represents the 
accuracy of the estimated signal with respect to the original 
noise-free signal. Similarly, the convergence rate demonstrates 
the suitability in terms of real-time execution. Based on the 
results, adaptive RLS and Kalman filters provide the best 
performance for the considered scenario, although they have a 
higher computational complexity, especially for adaptively 
reducing noise in non-linear dynamic vibration signals [21]. 

This can be appreciated by looking at representative results 
plotted in in Figure 3. from 𝑁 = 100 simulations (x-axis) which 
compare filter performance in terms of its SNR (y-axis) with 
variation in residual noise in the reference signal.  

 

 
Figure 3. Results comparison of filters for residual noise reduction 

 
 

Table 1 Results comparison of filtering techniques for reduction of residual noise (N=1000 simulations)  

Parameter Noisy Signal 
Wiener 
Filtering 

Wavelet 
Denoising 

Savitzky-Golay 
Filter 

Adaptive RLS 
Filtering 

Kalman Filtering 

Average SNR (dB) 3.08 18.17 11.13 14.57 30.85 36.18 

Standard Deviation 0.26 3.50 0.57 0.73 5.46 1.9451 

Mean Squared Error 
(MSE) 

0.2465 0.0229 0.0362 0.0177 0.0014 0.0795 

Percentage 
Improvement (%) 

- 489.94 216.36 373.05 901.93 1074.68 

Convergence Time (ms) - 179.1 169.6 153.6 156.6 N/A 

Order (N) / Frame 
length (L) 

- L=295 N=5 N=10 / L=99 
N/A N/A 



 

6. Potential of Kalman Filtering for Vibration Sensors  

Kalman filtering (KF) proves to be an effective tool for reducing 
residual noise in vibration signals , particularly in nonlinear and 
dynamic machine tool environments . As shown in the previous 
section, KF minimizes mean squared error by estimating system 
states amidst both measurement and process noise. In the 
context of this study, recent works have evaluated KF alongside 
other filtering methods [23], with the Unscented Kalman Filter 
(UKF) demonstrating their ability and superior performance in 
reducing noise and improving signal quality. The UKF generally 
performs better than the Extended Kalman Filter (EKF) in terms 
of accuracy, particularly in handling the nonlinear characteristics 
of machine tool vibrations, as reflected in the significant SNR 
improvement and lower MSE observed in the previously 
reported results [23]. This highlights the UKF's ability to address 
the challenges posed by residual noise in dynamic vibration 
signals. All these studies demonstrate the potential of KF , EKF 
and UKF in applications of vibration sensors in precision 
manufacturing. 

5. Conclusion      

This study investigates adaptive filtering techniques to 
mitigate residual errors, focusing on non-stationary vibration 
signals typically encountered in machine tool environments. 
Several methods, including Savitzky-Golay (SG), Wiener filtering, 
Wavelet denoising, Adaptive Recursive Least Squares (RLS), and 
Kalman Filtering (KF), were evaluated using a simulated dynamic 
noisy vibration signal from an industrial CNC machine. The 
evaluation criteria included Signal-to-Noise Ratio (SNR) 
improvement, Mean Squared Error (MSE), and convergence 
time, ensuring real-time applicability. Extensive Monte Carlo 
simulations were conducted to compare the effectiveness of 
these techniques in reducing noise and improving signal 
estimation accuracy. Significant differences were observed in 
their ability to handle the non-linear and non-stationary 
characteristics of machine tool vibrations. 

The results demonstrate that Kalman Filtering (KF) is the most 
effective technique for residual error compensation, achieving 
an SNR of 36.18 dB, a 1074.68% improvement over the raw noisy 
signal. Wiener Filtering achieved an SNR of 18.17 dB (489.94% 
improvement), and RLS demonstrated a substantial reduction in 
MSE to 0.0014, outperforming other methods. RLS and Kalman 
filters also exhibited fast convergence times, making them 
suitable for real-time industrial applications. 

These findings emphasize the importance of adaptive filtering, 
particularly KF and its extensions (Extended Kalman Filtering, 
EKF, and Unscented Kalman Filtering, UKF), in enhancing 
vibration sensor accuracy. Both RLS and Kalman filters proved 
highly suitable for time-sensitive industrial applications, a critical 
factor for predictive maintenance and quality control in the 
context of Industry 4.0. The research contributes to advancing 
sensor calibration and monitoring techniques, optimizing 
machine tool performance, reducing downtime, and improving 
the reliability of condition monitoring systems. 

This study fills a gap in the literature by offering a 
comprehensive comparison of multiple filtering techniques and 
providing valuable insights into their practical application in 
machine tool metrology. It lays the foundation for future 
advancements in sensor technology, real-time monitoring, and 
industrial optimization. As IIoT and smart manufacturing 
technologies evolve, adaptive filtering will play a key role in 
enhancing the accuracy and reliability of vibration sensors, 
enabling more efficient, data-driven industrial operations. 

Future research should explore the integration of these 
filtering methods with emerging sensor technologies, real-time 
data analytics platforms, and advanced machine learning 
algorithms to further optimize manufacturing processes and 
predictive maintenance strategies. 
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