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Abstract  
 Brittle materials, such as ceramics and glass, are challenging to machine due to their tendency to fracture under stress, making tool 
wear monitoring critical for ensuring machining quality. Consequently, Tool condition monitoring (TCM) is essential in micro-
machining brittle materials to enhance precision, tool life, and surface quality. This research aims to investigate the effectiveness of 
combining an acoustic emission (AE) sensor and cutting force dynamometer for real-time tool wear monitoring in the micro-
machining of brittle materials.  The experimental setup involved micro-machining operations using a high-precision dynamometer 
to measure cutting forces, while an acoustic emission sensor was employed to capture high-frequency signals indicative of crack 
propagation and tool wear. 0.9 mm diameter diamond coated end mills were used to machine single crystal silicon workpiece.  The 
collected data were processed and analysed to correlate the acoustic emission and cutting forces with different stages of tool wear 
and material removal conditions. Results display a strong correlation between increased cutting forces, amplified acoustic 
emissions, and the onset of tool wear. The acoustic emission sensor was particularly sensitive in detecting micro-cracks and minor 
tool degradation that were not immediately apparent from force measurements alone. Additionally, the integration of both 
sensors provided a comprehensive monitoring system, enabling more accurate predictions of tool life and reducing the risk of 
catastrophic tool failure.   
The study concludes that the combined use of AE sensors and cutting force dynamometers offers a robust, non-intrusive solution for 
tool condition monitoring in micro-machining brittle materials, enhancing machining performance and reducing downtime due to 
unexpected tool failures.  
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1. Introduction 

 
Micro-milling is a precision machining process aimed at 

facilitating an enhanced requirements of high machining 
efficiency, materials surface characteristics, extremely close 
tolerances, machine positioning accuracy and dimensions. [1-4]. 
These processes have gained tremendous grounds due to an 
increased demand in the miniaturization of manufactured 
engineering parts and complex features (micro parts) of high 
integrity, good surface finish, and with accuracy lower than one 
micron [2-3]. Thereby becoming more fundamental in the 
automotive, communication, electronics, pharmaceuticals, 
biomedical, aerospace, and mechanical industries. [2-4].  

 
Brittle materials, such as ceramics, glass, and silicon, play a 

pivotal role in technological growth due to their unique 
properties, including high hardness, thermal stability, and 
electrical insulation. These materials enable miniaturization, 
durability, and efficiency, driving innovation in high-tech 
industries. According to the Global Semiconductor Market, 
silicon was said to be the backbone of the $500+ billion 
semiconductor industry, powering technologies from 
microprocessors to memory chips. The advanced ceramics and 

glass market is projected to reach $143 billion by 2030, driven by 
growing demand across various industries. 

 
 
Figure 1. Importance of TCM in Micro Machining 

 
Brittle materials such as silicon and glasses are quite difficult 

to machine because of their high hardness and low toughness. 
These materials often deform elastically prior to fracture by the 
catastrophic propagation of cracks and fracture under impact 
and cutting. [4]. Despite successfully machining of miniature 
parts and complex shapes with high accuracy, micro machining 
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encountered problems such as tool wear and tool failure. Tools 
which are small and long, could not withstand the generation of 
contact machining forces leading to tool formation, chatter and 
vibration, and tool stress, thereby causing tool breakage [3]. 
Machine failure has become more costly and has undesirable 
effects on the availability and the productivity. Past research 
shows that tool failure amounts to 20% of total milling 
machining downtime while cost of tools and tools replacements 
account for between 3-12% of total processing cost. 
 

Consequently, there is need to develop a robust approach for 
monitoring tool wear by employing Tool Monitoring Condition 
(TCM). From the above charts, Figure 1a. highlights the 
percentage impacts of key benefits, such as reduction in tool 
wear (30%), cost savings (25%), precision improvement (40%), 
and waste reduction (20%), while Figure 1b. displays the 
proportional contribution of each benefit to the overall 
effectiveness of tool condition monitoring.  

 
2. Experimental Set Up 

An attempt was made to monitor the tool condition (in-
process) using Acoustic Emission (AE) and cutting force 
dynamometer sensors in micro milling of brittle materials. The 
machining task was performed using a CNC Mini-Mill/GX with an 
NSK NR-3060S ceramic bearing spindle powered by a NSK EM-
3060 350W brushless motor. The allowable motor speed of the 
spindle is between 5,000-60,000 rpm. milling machine has an 
XYZ table resolufion of 0.0001 mm.  

 
Cutting force and acoustic wave signals were taken during the 

milling operation with the aid of a dynamometer and acoustic 
emission sensors respectively. These sensors are to be mounted 
closely to the cutter-workpiece interface on the milling machine 
as shown in the Figure 2. Tool wear and tool failure are evaluated 
against some machining parameters to ascertain the 
relationship between flank wear, cutting edge, AE signals and 
cutting force dynamometer signals in micro milling of silicon and 
glass. 

 
Glass and silicon workpiece samples were both cut to sizes of 

40 mm by 20 mm and were waxed on an aluminium plate of 
65mm X 40mm X 15mm using a VWR-355 Hotplate. The 
specification of these materials is shown in Table 1. The plate is 
then clamped on the three-axis Kistler 9256C mini 
dynamometer, and Kistler Piezotron 8152C AE sensor screwed 
with an M6 to the plate. 

 

 
 
Figure 2. Experimental Setup for Micro Milling 

    The AE and cutting force signals are acquired at a sampling 
frequency of 100 kHz and 40 kHz respectively. Micro-Precision 
short carbide + Graphix 888507G0090 cutting tool of 0.9 mm 
diameter end mill (2 flute) with a 30° Helix angle was used for 
the slot milling operation throughout the experiment. 

 
Table 1. Material Specification 

 

Material Specificafion Silicon Glass 

Density (Kg/m3) 2329 2465 

Young's Modulus (Pa) 1.63E+11 6.99E+10 

Poisson Rafio 0.27 0.215 

Coeff. of Thermal Expan. (K-1) 2.58E-06 9.34E-06 
 

 
Six sets of experiments (3 each for silicon and glass) were 

performed to machine 12 slots size each on the workpiece using 

new tool, slightly worn-out tool, and severely worn-out tool. A 

total of twelve (12) diamond cutting tools were used, with each 

of the experiment performed six (6) times. The tool in each 

experiment is used to perform the continuous milling process 

until it reaches a bad stage (completely worn-out). A spindle 

speed of 25,000 rpm, a 30 µm depth of cut, and a feed rate of 1 

µm/rev were used as the machining parameters for glass. The 

same parameters were applied for machining silicon, except for 

the depth of cut, which was set to 15 µm. 

3. Tool Wear Monitoring 

The direct and indirect methods of TCM were adopted and 
compared in this research work. In the direct TCM method, after 
each of the experimental tasks, the cutting edge (or flank face) 
and workpiece machining surface were examined and analysed 
first with a DinoCapture 2.0 camera and later checked for proper 
viewing and analysis under Scanning Electron Microscopy (SEM).  
These images were properly monitored under the same vision 
systems and compared with that of the new tool. 

 

 
 
 
Figure 3. Tool Wear Stages 

 
 Variations in cutting edge radius was used as a criterion for 

tool wear measurement. The ratio of the used cutting tool edge 
radius, after each experiment, to the new cutting tool edge 
diameter was used to compare and determine the various tool 
wear values, VB. Plotting the tool wear value, VB with the cutting 
length (or machining time) defines the tool wear stages. These 
stages are identified as the slight wear, steady wear, and severe 
wear (Figure 4). This analysis is then compared to the features 
extracted from the signal processing using time domain, 
frequency domain (Figure5.) and wavelet decompositions 
(Figure 6). A TCM model is trained and predicted. 



 
 
Figure 4. Change in tool wear VB value with the number of    
                 cufting fimes. 

 

The indirect TCM method entails four basic processes such as 
data acquisition, data processing, features extraction and 
training a prediction model. Data acquisition (DAQ) system 
collects measurement data of physical conditions and send same 
to the computer for storage, monitoring, and/or processing, for 
future analysis. It is basically made of an analogue-to-digital 
(ADC) converter and output/display unit. The acquired signals 
were processed for amplification, filtering, denoising and 
feature extractions. These signals were represented in time 
domain, frequency domain and time-frequency domain. The 
processing of cutting force and AE signals for all the experiments 
are carried out using 7-Level 1-D Continuous Wavelet 
Decomposition method with Db-4 5]. The spectral densities of 
the respective signals are shown in Figure 5 and 6. 

 
The feature selection process employed a multi-stage 

approach to identify the most relevant predictors for tool wear 
in micro milling. Initially, we extracted an extensive set of 
features across time domain (statistical moments, peak-to-
valley ratios), frequency domain (power spectral density, 
dominant frequencies), and wavelet domain (energy distribution 
across decomposition levels). 

The selection criteria are primarily based on two quantitative 
methods: 

 
i. Principal Component Analysis: We identified features 

contributing significantly to the first three principal 
components, which accounted for 87% of data variance. 

ii. Information gain ranking: Features were ranked by their 
information gain with respect to tool wear classes, with a 
threshold of 0.5 used for feature inclusion. 

 
The selection methodology prioritized features demonstrating 

both statistical significance (p < 0.01) and physical relevance to 
the micro milling process mechanics. This balanced approach 
ensured the model captured meaningful signal patterns while 
maintaining computational efficiency. 

 

 
Figure 5a. Power Spectrum Density from the AE Signals 
 

 
 
Figure 5b. Power Spectrum Density from the AE Signals 
 

Just like other common features, the Power Spectrum Density 
(PSD) possess same trend (with the AE signals) and reflects how 
the power of each signal is distributed across the frequency 
range, particularly focusing on a region centred around 2 × 10⁴ 
Hz. For all three wear conditions (for both glass and silicon), most 
of the energy is concentrated near 2 × 10⁴ Hz, suggesting that 
this frequency band is critical for diagnosing wear. The 
progression from slight wear (S1) → medium wear (S2) → severe 
wear (S3) shows an increase in both the number and magnitude 
of peaks. The Power Spectrum Density plot reveals a clear 
progression of energy across the three wear conditions: S1 - Low 
vibration energy (stable tool condition), S2 - Increased energy 
and new peaks (medium wear) and S3 - Highest energy and 
sharp peaks (severe wear). This trend indicates that wear 
severity introduces more excitation into the system, resulting in 
higher energy across the spectrum. The emergence of new 
frequency peaks in S2 and S3, which are absent or minimal in S1, 
may be attributed to specific fault mechanisms or vibration 
modes induced by wear. Hence, there is a clear relationship 
between PSD amplitude and wear severity, as higher PSD values 
in S2 and S3 reflect the growing impact of wear on the system. 
The PSD analysis confirms that the frequency band near 2 × 10⁴ 
Hz is a critical diagnostic region for identifying and monitoring 
wear in the tool. 



 
 
Figure 6. Power Spectrum Density from the Force Signals 

 

Similarly, the overall trend of increasing PSD values with wear 
level progression (Slight to Medium to Severe) is still evident. 
This suggests that higher wear levels generally lead to increased 
vibration energy across the frequency spectrum. A summary of 
the overall comparison for PSD for the cutting force signals is 
shown below.  

 
Table 2: Overall Comparison Between the Force Signals 
 

Aspect Slight 
Wear 

Medium 
Wear 

Severe 
Wear 

Low 
Frequency 
Power (0 – 

50Hz) 

Concentrated 
with sharp 

peaks 

Increased 
and broader 
peaks 

Distributed 
and 
irregular 

High 
Frequency 

Power 
(>100Hz) 

Minimal Noficeable Significant 

Peak 
Sharpness 

Sharp and 
direct 

Broader and 
less disfinct 

Highly 
irregular 

Channel 
Behaviour 

Consistent 
across 

channels 

Increasing 
variability 

High 
variability 

 

4. Predicfion Model 

Most extracted features from AE signals in time domain, 
frequency domain and wavelet decompositions have a trend, 
and unlike the force signals. These features were selected and 
trained to predict a monitoring model first with Random Forest 
classification and then using Neural Network (Figure 7). 
 

The Principal Component Analysis (PCA) plot, (Fig 7a), 
illustrates the distribution of data points after reducing 
dimensionality to two principal components. The data points are 
well spread across different regions of the plot. 

 
 
Figure 7. Predicfive Trained Model 

 

The scattered point in different colours shows different wear 
conditions. The clear separation proves that the PCA effectively 
distinguish between wear states. The extracted time domain, 
frequency domain and wavelet decomposition features were 
tested for their level of importance using Random Forest model. 
Figure 7b shows the extracted feature importance for a RF 
model with spectral energy (feature 15) having the highest 
importance in contributing positively to the model’s predictions.  
The Receiver Operating Characteristic (ROC) curve (Figure 7c) 
shows the relationship between True Positive Rate (TPR) and the 
False Positive Rate (FPR) for each class during training, 
validation, and testing phases. The classifier achieves 100% 
sensitivity and specificity with none of the ROC line lie along the 
grey line. This consistency across the Training, Validation, Test, 
and All ROC plots confirms that the model generalizes well 
without overfitting to the training data. 

 
5. Conclusion 

Performance of tool condition monitoring was analysed with 
micro machining of brittle materials using AE sensor and 
dynamometer. Signals were collected, processed and analysed 
for the two materials using same machining parameters. The 
extracted features from the AE signals (for silicon and glass) 
correlates with the direct TCM method as the extracted features 
possess significant trends, thereby indicating tool wear stages. 
The extracted force signals show no significant trend. A 
predictive TCM model was then developed with Neural Network 
algorithm for tool condition monitoring.      
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