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Abstract 
This work implements a fast and efficient autofocusing method for 3D pose estimation using deep learning and digital holographic 
microscopy. The proposed approach achieves video-rate tracking of moving targets with sub-micrometere accuracy, with emphasis 
on determining the in-focus distance via a simplified Gedanken model, TinyGedanken, reaching inference times of ~1 ms using 
simulated digital holograms. By leveraging deep learning models, such as GendankenNet model, the method accelerates traditional 
holographic reconstruction to directly infer the in-focus distance Z from raw holographic dataset. This approach significantly improves 
processing speed, making it ideal for pose measurements for microrobotic applications, such as actuator characterization, micro-
assembly and biomedical manipulation. 
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1. Introduction   

In computer micro-vision and micro-robotics, precise 3D 

positioning and trajectory determination are critical for various 

industrial and clinical applications [1]. Deep Neural networks 

(DNNs), particularly Convolutional Neural Networks (CNNs) and 

Vision Transformer (ViT) models, play a central role in processing 

visual data [2]. In microscopy, digital holography (DH) gives 

access to  both wavefield diffracted by an object in both 

amplitude and phase, from a single image and over extended Z 

ranges without mechanical displacements. However, in-focus 

images are reconstructed numerically,  from an off-axis or in-line 

configuration, through time-consuming  digital image 

processing. By integrating DNNs, especially the GedankenNet 

model [3] alongside other CNNs models like UNet [4], with DH, 

this approach provides a fastest solution for accurately tracking 

object trajectories in automated microscopy under video-rate 

constraints [5]. The paper focuses on a tiny version of a 

GedankenNet model (TinyGedanken) and highlights its unique 

advantages in processing efficiency and inference speed in the 

realm of computer micro-vision and micro-robotics. Advanced 

micro-assembly platforms in robotics require precise translation 

and rotation stages (Fig. 1(a)) to handle tasks with nanoscale 

positioning accuracy and large-scale movements. This work aims 

to achieve 3D inference and video-rate pose estimation and 

automated microscopy for applications such as 3D MEMS micro-

nano-assembly, alignment, 3D nanoprinting, and visual servoing 

for nanopositioning [1]. 

2. Context and Background      

2.1. Deep neural networks 
  

DNNs, inspired by biological neural systems, process and 

analyze complex data using multiple layers, after a training step 

based on input-output paired dataset. This data-driven 

approach allows  to use non-linear transformations from input 

to output, enabling tasks like linearization in higher-dimensional 

spaces [4]. Training DNNs involves optimizing the network with 

input-output data pairs, and sufficient training data is essential 

for optimal performance. Notably, CNNs and ViTs have shown 

high effectiveness in tasks such as image classification, computer 

vision, and complex problems like autofocusing [2] and phase 

retrieval [6] in digital holography. This paper presents a modified 

version of the Gedanken neural network [3], utilizing spectral 

layers to accelerate inference for determining the autofocus 

distance Z in digital holographic microscopy. 

2.2. Digital holographic microscopy and computer micro-vision 
for micro-robotics 
     

Digital Holography (DH) captures both the amplitude and 

phase of an object’s wavefield using a CMOS sensor. Combined 

with a 2D pseudo-periodic pattern (PPP) used as a phase object, 

it allows sub-voxel 3D pose measurement through micro-vision 

phase correlation computations [7, 8, 9]. Figure 1 summarizes 

major steps of the method; a Lyncee‐Tec Digital Holographic 

Microscope (DHM) with a 10× microscope lens follows the 

displacements of a PPP placed on a precision robot (a), a typical 

recorded hologram (b), and the reconstructed intensity (c) and 
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phase (d) of the object [2]. Digital hologram reconstruction uses 

the Angular Spectrum Method [10] and applies this approach to 

micro-objects (see [2] for details). DHM supports digital 

autofocusing, enabling automated microscopy and 3D pose 

estimation of micro-objects. Recent studies show that DNNs can 

accelerate autofocusing in DHM by treating it as a classification 

or regression task [5]. Key challenges include enhancing 

multiscale sensitivity for 6 degrees of freedom (DoF) pose 

estimation while maintaining a wide field of view and depth of 

field [1]. We explore this approach on our 2D pseudo-periodic 

pattern used as reference sample (Fig. 1(b), (c) and (d)). The 

latter is made of an altered periodic frame providing two 

complementary information sources. On the one hand, the 

pattern periodicity ensures redundancy and allows sharp spatial 

frequency filtering to remove noise and achieve high resolution. 

On the other hand, an absolute binary code is encrypted in the 

missing dot distribution to remove 2π ambiguities and allow the 

exact X, Y, α localization of the current view within the whole 

centimeter-sized encoded area.  

Figure 1. a) Lyncee-tec DHM observing a typical pseudo-periodical 
pattern (b), which is a micro-structured plate moved in 3D by a hexapod 
stage. (c) A typical experimental hologram of the pseudo-periodic 
pattern that allows 3D pose measurement [2]. (d) In-focus image in 
amplitude reconstructed by the Angular Spectrum Method at Z = 185 
µm.    

3. Autofocusing in digital holography     

In automated microscopy and micro-robotics, precise 3D 

positioning, especially in the Z-direction, is critical for controlling 

micro-object trajectories. Traditional autofocusing methods rely 

on mechanical adjustments along the optical axis, which are 

slow and inefficient, especially for video-rate applications. 

Digital holography (DH) offers a solution by capturing both 

amplitude and phase of the object’s wavefront, allowing 

computational refocusing and 3D reconstruction without 

mechanical movement. However, determining the correct Z-

position from the captured data remains a challenge, as 

traditional methods of numerical backpropagation and 

sharpness criteria can be slow, uncertain and computationally 

expensive [2]. 

To address this, deep learning models like CNNs or GedankenNet 

can be used to speed up autofocusing in DH. By leveraging 

spectral layers, GedankenNet can predict the optimal focusing 

distance directly from the holographic image, bypassing 

traditional multi-reconstruction methods. This enables faster, 

more accurate determination of the in focus distance, essential 

for video-rate 3D pose control in applications like micro-

assembly and nano-positioning. 

4. TinyGedanken Model 

                       
Figure 2. TinyGedanken model based on the original GedankenNet 
model [3]. The model takes 128x128 pixel images as input, with a single 
SPAF block. The SPAF block width is reduced to 12 instead of the original 
48. All the changes results in a total of 440,436 parameters. The final 
layer is adapted for regression to predict the autofocus distance Z.    

 
Figure 2 illustrates the TinyGedankenNet model based on the 

vanilla version proposed by [3]. In this version, the input images 

are reduced to 128x128 pixels, randomly cropped from the 

hologram space. The model features a single spatial Fourier 

transformation (SPAF) block, down from the original eight 

blocks. The SPAF block has been adjusted to use Hadamard 

multiplication, replacing the complex multiplication. 

Additionally, the width of the SPAF block has been reduced from 

48 to 12, bringing the total number of parameters from 

39,476,004 to 440,436. The final layers have been modified to 

adapt for a regression. The output of the last convolution layer 

(12, 128, 128) is reduced to a 2D tensor (16, 16) by applying a 2D 

adaptive average pooling layer. Finally, the 2D tensor is flatten 

and linearized to predict the distance Z.  

5. Results 

The model has been trained only using 15,235 simulated 

holograms (taken from a complete set of 65,665 simulated 

holograms ranging along a distance Z of 185μm), with 13,713 

used for training and 1,522 for validation. Each epoch processed 

500 holograms from the training set and was validated on 16 



  

 

holograms from the validation set (following a few-shot learning 

approach). A total of 5,000 epochs were run. The log cosh 

function was used as the loss function, and the Adam optimizer 

with a weight decay of 10-4 was employed.  

Figure 3. Absolute error for a set of 1791 test holograms unseen during 
training ranging on a total distance of 140 μm using a TinyGedanken 
model (single SPAF block). With a mean absolute error of 280 nm and a 
max absolute error of 1.3 μm. 

 

Figure 3 shows the inference results for a set of 1791 holograms 

unseen during training ranging on a total distance of 140 μm 

along Z-axis. The absolute error is limited by 1.3 μm (with a mean 

error of 280 nm). 

Table 1 shows the error on the detected distance Z varying the 

number of SPAF blocks inside the TinyGedanken model. The 

single SPAF block does not impact much the accuracy of the 

model, the mean absolute error is stable with a slight impact on 

the max absolute error. 

Table 1 Comparison of the accuracy varying the number of SPAF blocks 
of the TinyGedanken. 

Models Number of 
SPAF blocks 

Z error 

Mean 
absolute 

error 

Max 
absolute 

error 

TinyGedanken  4  290 nm 970 nm 

TinyGedanken 2 275 nm 718 nm 

TinyGedanken 1 280 nm 1.3 μm 

 

Figure 4 shows the inference speed on different GPUs like a 

Nvidia A100 and V100. The inference speed is below 2 ms and 

close to 1 ms for the A100 (considering that the transfer of an 

image to the GPU takes about 0.08 ms for a NVidia A100). This 

contrasts with the speeds presented in [2] and [11], respectively 

~20 ms and 9 ms (using a CNN, MobileNetV3). 

Figure 4. Inference speed on a Nvidia A100 or V100, ~1.25 ms per 

inference on a A100 using a TinyGedanken model (single SPAF block). 

 

Table 2 provides a comparative analysis of inference speeds for 
the GedankenNet model and the variation of the TinyGedanken 
model, focusing on the impact of reducing the number of SPAF 
blocks. The table highlights inference times on two high-
performance GPUs, the NVIDIA A100 and V100. The original 
GedankenNet model, which incorporates 8 SPAF blocks, serves 
as the baseline. It achieves inference speeds of 7.65 ms on the 
A100 GPU and 13.70 ms on the V100. This comparison 
underscores a clear trade-off between model complexity and 
computational efficiency. Notably, the A100 GPU consistently 
outperforms the V100 across all configurations, demonstrating 
its superior processing capabilities. These results highlight the 
potential of model simplification to achieve faster inference, 
particularly in resource-constrained or latency-sensitive 
applications. 

Table 2 Comparison of inference speeds varying the number of SPAF 
blocks of the TinyGedanken with orginal GedankenNet model as 
baseline. 

Models Number of 
SPAF blocks 

Inference speed 
NVidia 
A100 

NVidia 
V100 

GedankenNet 
Model 
(512x512 input 
images) 

8 7.65 ms 13.70 ms 

TinyGedanken  4 3.68 ms 6.79 ms 

TinyGedanken 2 1.93 ms 3.51 ms 

TinyGedanken 1 1.25 ms 1.81 ms 

 
 
 

6.  Conclusion 

The use of TinyGedanken model (with a single SPAF block) has 

proven to be highly effective in achieving fast autofocusing for 

3D pose tracking in digital holography. With a significantly 

reduced number of layers and parameters, this modified model 

reaches an impressive inference time of just ~1.25 ms on an 

Nvidia A100 GPU. Despite the reduction in complexity, the 

accuracy of the in-focus prediction remains on par with results 

presented in [2], demonstrating that the streamlined 

architecture does not compromise performance. This rapid 

inference time and high accuracy make the TinyGedanken model 

a promising solution for video-rate applications in automated 



  

 

microscopy and micro-robotics, offering both efficiency and 

precision in 3D positioning tasks.  

7.  Prospects 

Figure 5 demonstrates how the X and Y coordinates could be 
retrieved from the hologram space, with a focus on predicting 
and reconstructing a trajectory, for instance a Lissajous 
trajectory (Fig 5. (c)).  

The input hologram, shown in Fig. 5(a), is a 768 x 768 pixels 
image processed by the model to produce a 64 x 64 pixels binary 
thumbnail (Fig. 5(b)) using a UNet-like architecture [5, 12]. A 
post-processing algorithm is then applied to the reconstructed 
thumbnail to extract binary vectors representing the X and Y 
positions. These binary vectors are part of a complete sequence 
of 4096 bits encoding the positions along X and Y [8]. 
 
An hologram represents a small area of the total encoded 
surface area of 11 x 11 cm², representing the full range of X and 
Y positions. 

To derive the micron-scale coordinates, each vector's index in 
the sequence is identified. The position of each vector, 
multiplied by the distance per bit (27 μm), determines the final 
X and Y coordinates (Fig. 5(c)).  

 
Figure 5. a) a simulated hologram provided to the XY model as proposed 

in [5], (b) the output of the model, a binary thumbnail representing the 

target, (c) the computed trajectory from the predicted thumbnails with 

outliers in red. 
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