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Abstract 
In this study, an extended analysis of measurement errors of optical coordinate measuring machines (OCMMs) is presented with the 
focus on the impact of the direction vector of the measurement point on the form errors. A specially designed rotary table with a 
central through hole is used in the experiments presented in the paper. It enables precise optical measurements using transmitted 
light. The calibration procedures for both optical and contact probes are conducted on the same setup to ensure consistency. 
Subsequently, the measurement errors across various angular orientations is determined, generating a correction matrix based on 
the direction vector of the measurement point. 
Once the error matrix is established, it is applied to the measurement of geometric features of optical standards, specifically a 
reference glass plate with circles. Following this, the matrix is used also to measure complex industrial components, including plastic 
and metal parts of known geometry that have been previously calibrated on other coordinate measuring machine - PMM 12106. 
These components feature intricate geometric characteristics, such as key dimensions, flatness, lines, circles, circle segments, and 
parallelism, all of which are measured in this study. 
The aim is to evaluate how the application of the correction matrix affects the precision of the measurements, particularly when 
dealing with parts of varying material properties and complex shapes. The results of the experiment provide insight into the potential 
improvements in measurement accuracy when using direction vector-based corrections, highlighting the effectiveness of this 
approach for enhancing optical measurement techniques in industrial environments. 
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1. Introduction 

In modern manufacturing industries, the demand for precision 
and repeatability in geometric measurements continues to grow, 
particularly in sectors such as automotive, aerospace, and medical 
technologies. The quality and reliability of products in these 
industries heavily depend on the ability to accurately reproduce 
the designed dimensions of components. Coordinate Measuring 
Machines (CMMs) play a pivotal role in ensuring the quality 
control of these components by verifying their geometric 
properties against design specifications. A specialized class of 
these devices, Optical Coordinate Measuring Machines (OCMMs), 
leverages optical probes to enable non-contact measurements, 
proving indispensable when handling delicate, soft, or transparent 
materials where traditional tactile probes may cause surface 
damage or introduce measurement errors. Despite their 
numerous advantages, OCMMs are inherently susceptible to 
specific types of measurement errors due to technological 
limitations and the optical systems' operational characteristics. 
The sources of these errors can range from geometric inaccuracies 
of the machine itself to environmental influences such as 
temperature fluctuations or vibrations. Recent developments in 
artificial intelligence (AI) and machine learning (ML) offer 
promising opportunities to enhance measurement accuracy by 
identifying and correcting these errors. Techniques such as error 
modeling, correction matrices, and predictive algorithms have 
been successfully integrated into  

various precision measurement applications, including CMMs 
and OCMMs [1-3,5] 

AI-driven methodologies have shown potential in not only 
automating data analysis but also in providing real-time 
corrections to measurement processes. For instance, ML 
algorithms can be employed to analyze the relationships 
between measurement parameters and observed deviations, 
thus facilitating the development of compensation models that 
adjust measurement results based on identified standards. 
Furthermore, integrating AI into metrology has been 
instrumental in the certification and validation of measurement 
algorithms, enhancing the reliability of the results in industrial 
settings [4]. 

In this paper such example of use of AI in coordinate metrology 
is given. Direction-dependent measurement errors of CMMs 
equipped with video probe are identified and then, using AI-
based model that is described in following sections of the paper, 
corrected during measurements. 

2. Data Processing and Neural Network Training 

The process of improving measurement accuracy using neural 
network-based corrections required a meticulously designed 
data processing and model training pipeline. This section details 
the methodologies employed for data acquisition, 
preprocessing, integration, and the subsequent training of the 
neural network. 
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2.1. Data Acquisition and Preprocessing 
The initial stage involved gathering measurement data from 

calibration standards. The datasets consisted of point 
coordinates (X, Y, Z), direction vectors (i, j, k), and deviations (dev 
i, dev j, dev k) recorded during measurements. These 
measurements were performed using an optical coordinate 
measuring machine (OCMM) Zeiss O'Inspect with an additional 
special designed rotary table, which introduced angular 
variations that were systematically recorded. 

Each dataset was subjected to preprocessing to ensure 
consistency and accuracy in the subsequent stages. The 
preprocessing steps included the calculation of distances 
between measurement points, derived from feature identifiers 
specified in the measurement configuration files. Additionally, 
for circular standards, the least squares method was applied to 
fit circles to the point data, allowing for the calculation of circle 
centers, diameters, and form errors. The resulting geometric 
parameters served as critical inputs for model training. 

2.2. Data Integration and Filtering 
Following the preprocessing of individual datasets, the data 

were integrated into a unified structure. This integration involved 
combining measurements from standard circles and glass scale 
into a single dataset, ensuring a comprehensive representation 
of various measurement scenarios. 

To enhance the quality of the data used for training, a multi-
step filtering process was applied. First, the data were 
segmented into angular intervals based on the direction 
vectors. Each interval was analyzed for outliers using 
statistical techniques such as the two-sigma. Additionally, the 
data have been filtered to retain a specific number of points, 
which is 10 000, to balance the dataset size with 
computational efficiency. 

A crucial part of the filtering process involved ensuring uniform 
distribution across angular intervals to prevent bias in the 
training data. The filtered data were sorted in ascending order 
based on the angular measurements, facilitating a structured 
input format for the neural network. 

2.3. Data Normalization 
Before training the neural network, the input features were 

normalized to improve the model’s learning efficiency and 
convergence rate. Z-score normalization was applied to the 
direction vectors (i, j, k) transforming them to have a mean of 
zero and a standard deviation of one. This standardization was 
essential for ensuring that the neural network treated all input 
features with equal importance, avoiding dominance by any 
single feature due to scale differences. 

Normalization also played a critical role in preventing issues 
related to numerical instability during training, particularly when 
dealing with high-precision measurement data typical in optical 
metrology. 

2.4. Neural Network Architecture and Training 
The neural network was designed to predict measurement 

errors based on the normalized direction vectors. The model 
architecture consisted of multiple layers with varying numbers of 
neurons, optimized for both performance and computational 
efficiency. To prevent overfitting, regularization techniques such 
as dropout were employed, where a fraction of neurons was 
randomly deactivated during training to improve generalization. 

The model was compiled using the RMSprop optimizer, known 
for its effectiveness in handling non-stationary objectives, which 
is typical in measurement data due to varying geometries and 
environmental conditions. The loss function used was Mean 
Squared Error (MSE), chosen for its ability to penalize larger  

deviations more heavily, thereby focusing the model on 
minimizing significant errors. 

During training, early stopping criteria were implemented to 
halt the process if no improvement was observed in the 
validation loss over a set number of epochs. This approach 
ensured efficient use of computational resources and prevented 
unnecessary overfitting. 

2.5. Model Evaluation and Validation 
The trained model was evaluated using a separate test 

dataset, comprising measurements not included in the training 
phase. The model’s performance was assessed by comparing 
the predicted corrections to the actual measurement errors. The 
corrected distances were calculated by subtracting the 
predicted errors from the original measured distances, and 
these corrected values were compared against nominal 
distances. 

Statistical analyses, including error distribution histograms 
and summary statistics, were generated to visualize the 
effectiveness of the corrections. The model’s ability to reduce 
measurement errors across different geometries and angular 
positions was critically analyzed to identify strengths and areas 
for further improvement. 

3. Results 

In the subsequent phase of the research, an additional glass 
standard was employed to validate the effectiveness of the neural 
network-based correction method. Measurements were 
conducted using an optical coordinate measuring machine 
(OCMM) equipped with an optical probe at a maximum 
magnification of 6.4x. The measurements focused on a glass 
standard comprising nine distances, evaluated across multiple 
angular settings (132.97°, 193.49°, 230.89°, and 302.98°) (Fig.1). 
For each angular configuration, 30 repeated measurements were 
performed to ensure statistical robustness. 

Following data acquisition, comprehensive statistical analyses 
were conducted on all measured distances. Subsequently, the 
correction algorithm, developed in the neural network training 
phase, was applied to the measured data. The resulting 
corrections were integrated into the original measurements, and 
post-correction analyses were performed to evaluate the 
effectiveness of the applied adjustments. 

 
Figure 1 Measurements of the glass standard in different orientations 

Analysis of Corrected Measurements 
Table 1 summarizes the statistical results obtained before and 

after applying the corrections. The data reveal that for shorter 
distances, such as 2.0482 mm, the average errors after 
correction exhibit minimal deviation compared to the pre-
correction values. However, a significant 72% of the individual 
measurements demonstrated improvement, indicating the 
neural network's effectiveness in refining measurement 
accuracy for short lenghts. 

For longer distances, such as 14.3359 mm and 16.3837 mm, 
the average measurement errors before correction were more 



negative (-0.00010 mm and -0.00006 mm, respectively). These 
deviations likely stem from the cumulative geometric errors of 
the OCMM. The introduction of neural network-based 
corrections resulted in these errors shifting closer to zero (-
0.00009 mm and -0.00005 mm, respectively). This suggests that 
the correction algorithm effectively compensates for systematic 
deviations even in longer measurements. However, it is 
noteworthy that the percentage of improved measurements 
decreases with increasing distance. This trend aligns with the 
understanding that longer distances are more susceptible to 
additional influencing factors, such as machine geometry 
imperfections, thermal disturbances, and slight optical 
misalignments, which complicate the correction process. 

Furthermore, the conducted analyses indicate that the 
standard deviations (std) before and after correction remain 
relatively unchanged across all measured distances. This 
observation suggests that the applied corrections primarily affect 
the systematic error components—shifting the mean values 
closer to zero—without significantly altering the dispersion of the 
measurement results. The consistency of standard deviation 
values implies that while the corrections enhance measurement 
accuracy, they do not impact the inherent repeatability of the 
measurements. This stability in measurement dispersion is 
advantageous, as it confirms that the correction process does not 
introduce additional variability, maintaining the repeatability of 
the measurement system. 

Table 1 Results of the measurement before and after correction. IR 
denotes ‘Improvement Rate’ 

Nominal  
/ mm 

Min  
(before) 

/ mm 

Max 
(before) 

/ mm 

IR 
/ %  

Min 
(correction) 

/ mm 

Max  
(correction) 

/ mm 

2,0482 -0,00110 0,00093 72 -0,00105 0,00086 

4,0961 -0,00111 0,00088 58 -0,00106 0,00084 

6,1441 -0,00118 0,00083 66 -0,00113 0,00080 

8,1917 -0,00128 0,00112 63 -0,00123 0,00108 

10,2399 -0,00127 0,00091 60 -0,00122 0,00088 

12,2876 -0,00125 0,00116 47 -0,00120 0,00112 

14,3359 -0,00158 0,00095 60 -0,00153 0,00091 

16,3837 -0,00118 0,00082 67 -0,00113 0,00079 

18,4317 -0,00106 0,00098 55 -0,00102 0,00095 
 

The presented histogram illustrates the distribution of 
measurement errors before and after applying neural network-
based corrections in optical coordinate measurements. The 
original measured errors, represented by the blue bars, exhibit a 
broader distribution compared to the corrected errors, which are 
denoted by the orange bars. The histogram is further 
supplemented by red dashed lines marking the ±0.0004 
threshold, which serves as a reference for evaluating 
measurement precision. 

The application of corrections results in a noticeable 
centralization of errors around zero. This centralization indicates 
that the neural network effectively mitigates systematic biases 
inherent in the measurement process. The corrected data 
demonstrate a higher concentration of values near the center of 
the histogram, signifying that the majority of measurements have 
been adjusted to reduce deviations from the nominal values. The 
increased frequency of errors within the ±0.0004 threshold after 
correction suggests an overall enhancement in measurement 
precision. This improvement is evidenced by the densification of 
corrected errors in the central region of the  

histogram, which contrasts with the wider spread observed in the 
uncorrected data. 

 

Figure 2 Histogram with errors before and after correction 

Despite these improvements, both the corrected and 
uncorrected datasets exhibit points extending beyond the 
defined threshold, indicating the persistence of larger errors. 
However, the points in the corrected data are less pronounced, 
reflecting a reduction in the occurrence of extreme deviations. 
This reduction highlights the neural network's ability to address 
more systematic errors. 

An additional observation pertains to the symmetry of the 
error distribution. The uncorrected measurements display slight 
asymmetry, with a bias towards negative deviations. Following 
correction, the distribution becomes more symmetric around 
zero, suggesting that the neural network successfully 
compensates for these directional biases. 

Furthermore, the histogram reveals a decrease in the number 
of measurements exceeding the ±0.0004 threshold after 
correction. This reduction underscores the efficacy of the 
correction algorithm in enhancing measurement accuracy. 
However, the impact of the corrections is more pronounced near 
the center of the distribution, while extreme deviations are less 
affected, indicating potential limitations of the correction model 
in handling certain types of errors. 

In conclusion, the histogram analysis confirms that the neural 
network-based correction significantly improves the accuracy of 
optical coordinate measurements. The corrections primarily 
reduce systematic errors, shifting the distribution towards zero 
and increasing the proportion of measurements within 
acceptable error limits. Although the corrections effectively 
minimize moderate deviations, they do not completely eliminate 
outliers, suggesting that additional factors, such as 
environmental influences or machine-specific geometric 
imperfections, continue to affect measurement accuracy. These 
findings validate the integration of AI-based correction 
algorithms into OCMM systems as a means to enhance precision 
in industrial quality control applications. 

4. Conclusion 

The results presented in Table 1 highlight the neural network’s 
capacity to systematically improve measurement accuracy by 
reducing the average error across various nominal distances. 
Notably, shorter distances exhibit higher improvement rates, 
suggesting that the correction model performs optimally for 
shorter lenghts. Conversely, for longer distances, although the 
improvement rates are slightly lower, the corrections still 
demonstrate a meaningful reduction in systematic errors. 

The consistent standard deviations before and after correction 
reinforce the hypothesis that the neural network primarily 



addresses systematic measurement deviations rather than 
random noise or variability inherent in the measurement 
process. This behavior is advantageous in industrial applications 
where consistent, repeatable measurements are critical for 
quality assurance. 
In conclusion, the integration of neural network-based 
corrections in OCMM systems has proven to enhance 
measurement accuracy, particularly in addressing systematic 
directional errors. While the improvements are more 
pronounced in shorter measurements, the methodology 
exhibits a robust capacity to compensate for deviations across 
a range of measurement lengths, underscoring its potential for 
broader industrial application. 
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