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Abstract 
 
This work addresses the vibration control of positioning movements by different types of industrial robotic systems. The accuracy of 
positioning systems is affected by the vibrations associated with the structural compliance of the structure, by the excitation of the 
commanded movements and by the effect of external perturbations. These oscillations can be of different nature depending on the 
application. On the one hand, machining devices with high structural stiffness normally show high frequency oscillations. On the 
other hand, the vibration in large robotic manipulators have low frequency components, which can be even lower in the case of 
tethered manipulators. The vibrations can be handled by passive, semiactive or active vibration controls. The passive ones are 
normally limited to high frequency content and need to be combined with active methods for assuring the behaviour in the entire 
frequency range. 
Here, we focus on the use of active vibration control techniques, which is a problem that has been largely addressed in the literature. 
However, it is well-known that many of the current control strategies, while effective, involve a significant complexity in the design 
and implementation process. In the case of simpler techniques, they tend to be highly sensitive to modelling errors. Therefore, in 
this contribution, we explore the integration of AI-driven techniques with traditional control approaches to address the trade-offs 
inherent to these techniques, and to improve the overall system performance. AI-driven techniques are particularly well-suited for 
this integration due to their adaptability and capacity to handle uncertainties and potential changes in the system. 
As a contribution, we develop different control algorithms to tackle the control of active vibration control in industrial robotic systems 
by merging AI-driven techniques and different control approaches. These results are validated via simulation and compared to more 
traditional methods, demonstrating the effectiveness of the proposed approach in practical settings.  
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1. Introduction  

Robots and autonomous systems usually perform accurate 
positioning and trajectory tracking actuations in order to fulfill a 
specific task. This movement is highly affected by the oscillations 
induced in the structure by its inherent compliance, external 
perturbations and limitations of the control system (sensor 
noise, accuracy of the actuators, among others). The present 
work describes an active vibration control capable of reducing 
the oscillation of an industrial robot following the command of 
an operator. The analyzed platform is a tower crane, whose 
tethered load is prone to sway during the displacement 
therefore reducing the capability of the overall system to 
accomplish high speed operations. Currently, these systems 
heavily depend on the operator expertise. However, the 
proposed method aims to reduce this reliance, making the 
systems more autonomous. 
The control system described below is based on differential 
flatness, which has already been used in mechanical systems 
including diverse typologies of cranes, both for trajectory 
tracking [1, 2, 3, 4, 5] and planning [6]. Differential flatness is a 
property of dynamic systems which can be fully described by 
trivial linear representations based on certain trajectories called 
flat outputs. It can be used in closed loop conditions as it is the 
case in the previous references, but also with the operator in the 
loop [7]. In the latter, whose result is patented in [8], the input 
of the user is directly used as speed command for the trolley of 
a tower crane and smoothed with a third order filter. The 
present approach extends that result to be used in all actuators 

for 3D movements of the load. Instead of the filter from previous 
approach, the proposed method uses the complete crane 
diffeomorphism and it can reduce vibrations in all three degrees 
of freedom. 
The complexity of using differential flatness comes from the 
identification of the linearizing diffeomorphism for projecting 
the nonlinear system description into a trivial linear 
representation. Both the identification of the flat outputs and 
the consequent calculation of the diffeomorphism is not a trivial 
task. Furthermore, any variation in the system, like the dynamic 
effects from actuators or attached systems, modify the 
diffeomorphism. For this reason, an active research line is 
focused on the identification of the diffeomorphism by means of 
artificial intelligence (AI). This has been analyzed in [9], where a 
neural network is used for calculating a feedforward law, or in 
[10], which also uses differential flatness for identifying an 
inverse model. The previous approaches rely on open loop 
solutions and so they lack robustness. To solve this issue, further 
developments combine the differential flatness with closed loop 
controllers, like [11] for an electromagnetic actuator. In this 
case, it uses differential flatness with a sliding control whose 
response surface in the flat space is adapted using a neural 
network.  
Learning a diffeomorphism has multiple interests, both in 
modeling and control, and so it represents an active research 
line by itself [12]. In both cases, the projection of a tangent space 
into a linear as it is done in flat systems, is also the objective in 
Koopman and DMD representation [13]. 
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In consequence, although the remaining of the paper focuses on 
the active vibration control of a tower crane, the proposed 
approach can be useful for other systems and functionalities. 
The paper is organized as follows. Section 2 describes the tower 
crane system object of the paper. The control structure using 
flatness with the operator in the loop is presented in section 3 
and the performance in a virtual environment appears in section 
4. Section 5 shows the potential of using AI for identifying the 
diffeomorphism of the tower crane. Finally, section 6 
summarizes the conclusions of the work. 

2. Description of the system  

In this work, we address the problem of controlling the load 
position (𝑥𝐿 , 𝑦𝐿, 𝑧𝐿) in a 3D crane model (Figure 1). The load is 
moved by three actuators: trolley (𝑠1), cable length (𝑠2) and jib 
angle (𝜙1). The swing of the load at the end of the cable is 
described by the angles 𝜙2 and 𝜙3. 

 
Figure 1: Diagram of the 3D- crane system 

The dynamics of the system can be represented by the following 
set of differential equations [2], where the wire is assumed 
infinitely rigid in longitudinal direction: 

𝑠̈1 = 𝑢1 
𝑠̈𝟐 = 𝑢2 

𝜙̈1 = 𝑢3 

𝜙̈2 =
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((𝑠2𝜙̇1

2
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3. Control structure using differential flatness 

In this section, the application of differential flatness for 
reducing the oscilation (sway) of the load during the movement 
commanded by the operator is described. 
 
 

3.1. Differential flatness  
A system is said to be differentially flat [14], if there exists a set 
of variables (flat outputs, Y), which are equal to the number of 
inputs, such that all states (x) and inputs (u) are functions of the 
flat outputs and their derivatives. Conversely, the flat outputs 
are functions of the states, the inputs and their derivatives. In 
this case, there exists a diffeomorphism between 

𝑿 = {𝒙, 𝒖, 𝒖̇, … , 𝒖(𝑘)} and 𝒀 = {𝒚, 𝒚̇, … , 𝒚(𝑣)} 

Where k is the maximum derivative of u in the expression of Y; 
and v is the maximum derivative of y appearing in the expression 
of X. 
The tower crane system described in section 2 is flat as there 
exists a diffeomorphism [5, 7] which linearizes the system using 
(𝑥𝐿, 𝑦𝐿, 𝑧𝐿) as flat outputs resulting in the trivial representation: 

𝑥⃜𝐿 = 𝑤1 
𝑦⃜𝐿 = 𝑤2 
𝑧⃜𝐿 = 𝑤3 

With wi as the new inputs (i=1..3). 
The flat variables can be written in terms of the local variables:  

𝑥𝐿 = cos 𝜙1 (𝑠1 − 𝑠2 sin 𝜙2 cos 𝜙3)−𝑠2 sin 𝜙1 sin 𝜙3 
𝑦𝐿 = sin 𝜙1 (𝑠1 − 𝑠2 sin 𝜙2 cos 𝜙3)+𝑠2 cos 𝜙1 sin 𝜙3 

𝑧𝐿 = ℎ − 𝑠2 cos 𝜙2 cos 𝜙3 
In order to represent the states of the crane system in terms of 
the proposed flat outputs and its derivatives, [2] proposes the 
use of the force equilibrium equations on the load, using the 
auxiliary variable 𝐹𝐶, which represents the cable tension force. 
The expression appears below: 

𝑚𝐿𝑥̈𝐿 = 𝐹𝐶(cos 𝜙1 sin 𝜙2 cos 𝜙3 + sin 𝜙1 sin 𝜙3) 
𝑚𝐿𝑦̈𝐿 = 𝐹𝐶(sin 𝜙1 sin 𝜙2 cos 𝜙3 − cos 𝜙1 sin 𝜙3) 

𝑚𝐿(𝑔 + 𝑧̈𝐿) = 𝐹𝐶 cos 𝜙2 cos 𝜙3 
By algebraic manipulation of the previous equations, it is 
possible to obtain the complete diffeomorphism that depends 
on the flat outputs until ther 4th derivative (Figure 2). The 
following equations have been derived to relate the local states 
of the crane system in terms of the flat outputs: 

𝜙1 =  arctan (
(ℎ − 𝑧𝐿)𝑦̈𝐿 + 𝑦𝐿(𝑔 + 𝑧̈𝐿)

(ℎ − 𝑧𝐿)𝑥̈𝐿 + 𝑥𝐿(𝑔 + 𝑧̈𝐿)
) 

𝑠1 =
(ℎ − 𝑧𝐿)𝑥̈𝐿 + 𝑥𝐿(𝑔 + 𝑧̈𝐿)

cos 𝜙1 (𝑔 + 𝑧̈𝐿)
 

𝜙2 =  arctan (
(𝑦𝐿 cos 𝜙1 − 𝑥𝐿 sin 𝜙1)(𝑥̈𝐿 cos 𝜙1 + 𝑦̈𝐿 sin 𝜙1)

(ℎ − 𝑧𝐿)(𝑥̈𝐿 sin 𝜙1 − 𝑦̈𝐿 cos 𝜙1)
) 

𝜙3 =  arctan (
𝑥̈𝐿 sin 𝜙1 sin 𝜙2 − 𝑦̈𝐿 cos 𝜙1 sin 𝜙2

𝑥̈𝐿 cos 𝜙1 + 𝑦̈𝐿 sin 𝜙1
) 

𝑠2 =
𝑦𝐿 cos 𝜙1 − 𝑥𝐿 sin 𝜙1

sin 𝜙3
 

It is important to notice that even if the right-hand side of 𝑠1 
depends on 𝜙1, the latter can be computed from the flat 
variables. This happens also on the computation of 𝜙2, 𝜙3 and 
𝑠2. The equations are described in this manner to present them 
more concisely, while ensuring that each variable is ultimately 
computed only in terms of the flat variables.  
Only part of the derivation is outlined here due to its complexity 
and space constraints. The rest of the diffeomorphism can be 
computed by differentiating the previous equations. 

 
Figure 2. Diffeomorphism relating the state and the flat outputs 



  

 

3.2. Application of differential flatness for reducing the sway in 
manual mode 
Differential flatness can be used for damping the sway in the 
load of the tower crane. In normal conditions, the command 
from the operator is entered with the joystick and directly used 
as speed command to the actuators. In order to reduce the 
oscillation, a filter is applied to the signal as it appears in Figure 
3. The diagram also presents a differentiation block because the 
model in section 2 has its input in acceleration. However, the 
real system is commanded in speed as an input signal to the 
electric power inverters and so, the differentiator is not present 
in the physical control unit.  

 
Figure 3: Manual mode diagram 

The use of differential flatness is based on reading the joystick 
input from the operator as a speed command for the load. Given 
that information and applying robust differentiation the 
diffeomorphis is used to calculate the speed command for the 
three crane actuators. 

 
Figure 4: Flatness-based manual mode diagram 

4. Virtual validation 

In the following, the behaviour of the system is compared in 
normal and flatness-based manual modes. In both cases, the 
load has a similar displacement. The actuation commands 
appear in Figure 5 and Figure 6 respectively. 
 

 

 

 
Figure 5. Actuator commands in manual mode (up: actuator speed 
command entered by the operator; middle: acceleration command in 
the model; down: displacement of the trolley and the cable) 

The Error! Reference source not found. compares the oscillation 
levels in the load with both actuation modes and the effect in 

the movement of the load. As observed in the figure, the 
flatness-based approach highly reduces the oscillation and 
obtains a much smoother trajectory.  

 

 

 
Figure 6. Actuator commands using flatness-based manual mode (up: 
load speed command entered by the operator; middle: acceleration 
command in the model; down: displacement of the trolley and the cable) 

 

 
Figure 7. Result of using the approach with flatness-based manual mode 
(up: sway angles; down: comparison of the load displacement with and 
without the differential flatness approach).  

5. Approximation of Diffeomorphism using AI-driven 
techniques  
As observed in the previous sections, the use of differential 
flatness highly improves the performance of the system thanks 
to the relationship of the command with the trajectory of the 
load itself. However, the calculation of the diffeomorphism is by 
far the most complex aspect of the proposed approach for its 
application in different systems. First, it is necessary to prove the 
fulfillment of the flatness condition. And then, even in 



  

 

theoretically flat systems, the derivation of the flat outputs is not 
a trivial task. Although there are some theoretical methods for 
specific types of dynamic systems, the resulting differential 
equations are not always solvable. This issue gets even more 
complex when adding more detail to the mathematical 
description or having variable parameters, which can modify the 
diffeomorphism. For this reason, its identification by using 
machine learning techniques is an important issue both in 
control and system modeling.  
In the following, the suitability of using AI models is evaluated 
by identifying part of the previously described diffeomorphism. 
To do that, the virtual model has been used for generating the 
reference data. First, an initial exploratory analysis for 
characterizing the data distribution, its correlation and quality. 
After that, three types of models were evaluated: random 
forest, k-NN and neural network. The later is the one which 
showed the better predictive capabilities. The selected approach 
involved two neural networks. The first one (NN1), was designed 
to predict 𝑠1 and 𝑠2. The second one (NN2), predicted 𝜙1. This 
approach has been demonstrated to yield better results 
compared to using a single neural network for all predictions. 
The neural networks were implemented using the TensorFlow 
library in Python. After an optimization process, the selected 
architecture consists of layers with [128-64-32] neurons, 
including a 20% dropout after each layer to enhance the 
generalization capability of the models. A batch size of 32 was 
used, and the training dataset comprised 508,128 observations. 
The validation of the model used the Mean Absolute Error (MAE) 
metric, yielding the following results: 

 𝑠1 MAE: 3.2 (range: [−95,183] m), 

 𝑠2 MAE: 2.0 (range: [−4,150] m), 

 𝜙1 MAE: 0.1 (range: [−4,4] rad). 
 

The Figure 8 shows the matching obtained. The results prove the 
feasibility of this NN solution for identifying the diffeomorphism. 
This opens up important possibilities for the future, like adapting 
the control law in real time when the system is affected by 
uncertainties or variations. 

 
Figure 8: Diffeomorphism vs Neural Network 

6. Conclusions  

The present work describes the use of differential flatness for 
reducing the oscilation of a positioning system. Although the 
description is focused on a tower crane and on a manual 
actuation, the approach can be extended to different industrial 
robotic systems and both in manual and in autonomous 
applications. This approach can be further extended adding a 

closed loop controller in the flat linear representation for 
improving the robustness. Compared with previous approaches 
in tower crane applications, the proposed algorithm is able to 
reduce the oscilation in actuations involving the three degrees 
of freedom. 
The work also shows the potential of applying AI for learning the 
linearizing diffeomorphism required for applying the proposed 
algorithm. Two neural networks have been used for partially 
idenfying it and they have shown a good prediction capability. 
The use of a virtual model for generating the training and 
validating data highly facilitates the initial generation of the 
model. In this connection, it remains as further work the 
calculation of the feedforward diffeomorphism for calculating 
the actuation command using the learned model. This implies 
filtering and differentiating the generated signals as the model 
is less smooth that the theoretical function. 
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