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Abstract 
Mid-air ultrasonic haptics can provide tactile sensations without touch by applying acoustic radiation pressure. In general, ultrasonic 
haptic focusing is achieved by using cameras for phase control. However, in this study, we aimed to develop a focus without external 
devices using reinforcement learning. In previous studies, the phase was treated as a continuous value. However, because of the 
large amount of learning required, the focus did not converge. In this study, we attempted to form a focus by treating the phase 
difference as a discrete value. Furthermore, by narrowing the search range and reducing the action selection space, we efficiently 
learned to achieve a higher sound pressure, allowing us to create a focus that exceeds the target sound pressure. 
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1. Introduction  

Haptic technology is an area of tactile sensation. Mid-air 
ultrasound haptics can provide tactile sensations without touch 
by applying the acoustic radiation pressure of focused ultrasonic 
waves. This feature can be employed to reveal tactile principles 
by observing the skin during tactile presentation [1, 2].  

To create a strong tactile stimulation at a desired position, the 
phase control of multiple ultrasound waves using beamforming 
technology. In general, mid-air ultrasound actuators use hand-
tracking technology with a camera to calculate the phase from 
the distance.  In contrast, this study used reinforcement learning 
to define the phases of waves. Previous studies using 
reinforcement learning have employed a policy-based 
reinforcement learning algorithm called Proximal Policy 
Optimization (PPO). However, the results indicated that the 
policy could not discover a unique focus that maximized 
accumulated rewards [3]. In this study, to obtain a unique focus, 
we use a Deep Q-Network (DQN), a representative value-based 
reinforcement learning algorithm for discrete state spaces. 

2. Reinforcement Learning 

Reinforcement learning is a framework in which a decision-
making entity, called an agent, learns behaviors through trial 
and error in a dynamic environment. The agent selects an action 
𝑎 in a given state 𝑠, and the desirability of that action in the 
environment is quantified by a metric called a reward 𝑅. The 
value of taking action 𝑎 in state 𝑠 is represented as the state-
action value 𝑄(𝑠, 𝑎) , and a tabular listing of these values is 
referred to as the Q-table. In reinforcement learning, the goal is 
to learn policies that consistently yield high 𝑄(𝑠, 𝑎) values. In 
this study, actions correspond to phase differences between 
speakers, and states represent the sound pressure levels 
received by a microphone. 

A DQN is an algorithm that combines Q-learning with deep 
learning. The update equation for the Q-value in Q-learning is 
given by Equation (1). 

𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼 [𝑅𝑡+1 + 𝛾 max
𝑎𝑡+1

𝑄(𝑠𝑡+1, 𝑎𝑡+1 ) − 𝑄(𝑠𝑡, 𝑎𝑡  )] (1) 

 
In Q-learning, the updated of the Q-table involves selecting the 
action with the highest Q-value among all possible actions in the 
current state. However, this requires calculating the Q-value for 
all potential actions, which becomes computationally intensive. 
DQN approximates these Q-value calculations using deep 
learning. For actual decision-making, the algorithm follows the 
ϵ-greedy method to determine whether to select the action with 
the highest Q-value or to continue exploration. 

3. Experimental setup 

The Eight ultrasonic speakers were arranged concentrically 
with a radius of 13.9 mm as actuators. The SU1007 ultrasonic 
speaker from SPL (resonant frequency: 40 kHz) was used. The 
control system utilizes a Mini PC (Raspberry Pi 4B) to perform 
reinforcement learning and transmits the phase information to 
the Arduino Uno R3. Arduino writes the obtained phase 
information to the waveform generation IC AD9833. The signal 
output from the waveform generation IC was amplified through 
an amplifier circuit to a maximum voltage of 60 V and applied to 
the speakers, emitting ultrasonic waves. 

The actuators and microphone were positioned face-to-face, 
with the center of the actuator circle defined as the origin in a 
three-dimensional coordinate system (x, y, z). The microphone 
was placed at the desired point within the coordinate system. 
The voltage obtained from the microphone was treated as a 
reward in the reinforcement learning. In this study, one speaker 
was selected as the reference speaker, and beamforming was 
performed by individually controlling the waves of the other 
speakers relative to those of the reference speaker. Specifically, 
the phase of the control wave is assigned and synchronized with 
the fundamental wave to optimize the interference, thereby 
achieving effective sound pressure enhancement. Furthermore, 
to conduct reinforcement learning more efficiently, a method to 
narrow the search range for the ultrasonic phase was proposed. 
An outline of this method is shown in Figure 3. The details of this 
approach are as follows. 
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Figure 1. Experimental setup. 

 

 
Figure 2. Actuator 

 

 
Figure 3.  Diagram of directional localization 

 
I. The phases of the ultrasonic wave were set to 0°, 90°, 180°, 

and 270°, and the sound pressures 𝑃A, 𝑃B, 𝑃C, 𝑃D  were 
measured for each phase. 

II. The total sound pressures 𝑃A + 𝑃B, 𝑃B + 𝑃C, 𝑃C + 𝑃D, and 
𝑃D + 𝑃A  were calculated, and the combination with the 
maximum sound pressure was identified (e.g., 𝑃A  and 
𝑃B in Figure 3). 

III. Among the combinations that resulted in the maximum 
sound pressure, the phase difference with the higher 
sound pressure was selected (e.g., 𝑃B in Figure 3). 

IV. The selected phase difference and the phase difference of 
the other combination are explored at 45° range.  

This method efficiently narrows the exploration range, while 
determining the optimal phase difference. 

4. Results and discussion 

The DQN was implemented on the Mini PC, and the sound 
pressure was measured at the focal point. Prior to 
implementation, a simulation was conducted to optimize the 
learning and decay rates of. The focal point was set as (x, y, z) = 
(0, 0, 30). The total sound pressure when each speaker was 
operated individually was set as the target sound pressure. The 
target sound pressure at this focus point was 4839 Pa. Figure 4 
shows the sound pressure distribution when learning was 
performed over the entire range from 0° to 360°. Overall, the 
sound pressure was low and the focus was not clearly defined. 
Calculating the focal diameter from the half-value width yielded 
a vertical size of 20 mm and horizontal size of 8 mm. The 
theoretical half-value width was 9.28 mm [4], indicating that was 
very broad and not sufficiently formed. Additionally, the sound 
pressure was 3196 Pa, which was significantly smaller than the 
target sound pressure. This result can be attributed to the 
extensive exploration range during training, which impedes 
adequate learning progress. 

 
Figure 4.  Sound pressure distribution without directional localization. 
 

  
Figure 5. Sound pressure distribution with directional localization. 

 
The sound pressure distribution when using Directional 

Localization is shown in Figure 4. Calculating the half-value width 
yields a vertical size of 12 mm and a horizontal size of 12 mm, 
which are very close to the theoretical values. Furthermore, the 
sound pressure was 5945 Pa, which exceeded the target sound 
pressure. This improvement is attributed to the narrowing of the 
exploration range, which allows the system to focus on specific 
phase differences that result in stronger sound pressure, leading 
to more efficient learning. 

5. Conclusion  

In this study, the phase differences of the sound sources were 
assumed to be discrete states, ranging from 0° to 360°. The 
optimal phase difference is learned using the value-based 
reinforcement learning DQN algorithm. Consequently, the 
sound pressure at the focus center was only 66% of the target 
sound pressure. In addition, the half-value width was 
significantly larger than the theoretical value. It seems that the 
large exploration range during learning prevented sufficient 
learning. Therefore, we devised a method to narrow the 
exploration range and efficiently learn higher sound pressures. 
The sound pressure distribution was evaluated when the 
learning range was restricted using Directional Localization. The 
central sound pressure of the focus exceeded the target, and the 
half-value width approached the theoretical value, indicating 
accurate focus formation. 

In the future, speakers will be equipped with the ability to 
receive waves reflected from objects. The sound intensity of the 
reflected waves was learned using reinforcement learning, 
enabling ultrasonic focusing on the target location without the 
need for external equipment. 
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