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Abstract 
In the context of precision mechanical systems’ design, control, and exploitation, frictional phenomena in mechanical contacts 
represent a disturbance that, due to its highly stochastic nature, induces challenges in precision positioning applications. These 
physical phenomena are highly dependent on the relating conditions of frictional contacts, the scales of the applied forces, the 
materials in tribological contact, etc. To provide a detailed and systematic insight into these complex interactions, a machine learning 
- based approach is proposed in this paper. Quantitative data on the frictional forces in a single asperity contact between a silicon 
nitride probe and the surface of the studied alumina (Al2O3) thin film are obtained experimentally by using a scanning probe 
microscope in the lateral force microscopy measurement mode. With the aim of obtaining the best predictive model of the frictional 
forces within the studied variable parameters’ ranges of normal forces, sliding velocities and temperatures, this data is used to train 
multiple ML algorithms. To verify the best performing models, allowing to attain the most accurate prediction of frictional forces on 
a separately measured experimental dataset, the trained ML models are scrutinised according to distinctive statistical metrics. By 
employing state-of-the-art experimental and numerical methods, the hence developed models provide a valuable tool in obtaining 
worthy predictive potentiality for multiscale tribological phenomena, depending concurrently on several relevant process 
parameters. 
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1. Introduction 

The design of precision positioning systems is significantly 
influenced by the detrimental effects arising on the mechanical 
contacts of sliding bodies in relative motion, resulting in 
frictional forces. Frictional phenomena, recognized as one of the 
main disturbances in these systems, are therefore a perennial 
subject of extensive investigations. Such research endeavours 
face, however, modelling and predictive challenges due to the 
highly stochastic nature of friction, which is influenced by a 
variety of process parameters, including the type of materials in 
contact, contact area, normal loads, sliding velocities, 
temperature, and, in general, the complex interactions of the 
numerous interrelating physio-chemical effects at multiple 
scales [1]. 

This work aims to provide insights into these phenomena at 
the nano- to microscale of normal loads, while concurrently 
considering the variability of sliding velocity and temperature. 
Scanning probe microscopy (SPM) tribological measurements, 
focusing on the frictional interactions present in single asperity 
contacts, are thus performed. A thorough analysis of the 
resulting measurements is then performed by using various 
machine learning (ML) methods, allowing to attain valuable 
insights into the effects of scales and variable process 
parameters. 

2. Experimental methodology 

The experimental measurements of friction are carried out in 
this work by using the Bruker® Dimension Icon scanning probe 

microscope (SPM) in the lateral force microscopy (LFM) 
configuration, which represents a cutting-edge technique for 
quantifying nanometric frictional phenomena, approximating 
well the conditions of single asperity contacts [1, 2]. A silicon 
nitride (Si3N4) microcantilever probe moves herein laterally, 
while continuous contact is maintained between its tip and the 
surface of the studied samples. The Si3N4

 probes apply in this 
case a constant normal load on a 500 x 500 nm2 scanning area 
of the sample, with a set scanning resolution of 512 lines per 
scan. 

Alumina (Al2O3) thin film samples are studied, since they have 
favourable properties as coatings due to their high hardness, 
wear resistance, inertness, etc. The studied Al2O3 thin films are 
deposited on Si wafer substrates by using the atomic layer 
deposition (ALD) technique via trimethylaluminium (Al(CH3)3) 
precursors, in combination with water vapour at 200 °C, utilizing 
the thermal mode on a Beneq® TFS 200 ALD device [3]. High-
purity (6.0) nitrogen is, in turn, used as the purging gas. 

To obtain the values of the forces in the normal (exerted load) 
and in the lateral (frictional) directions, prior to the 
measurements each probe is calibrated in terms of its normal 
and lateral sensitivity [4, 5]. To cover the normal force ranges 
from nano- to microscales, six different probes, each with a 
different geometry, are calibrated: 

- Bruker® MSNL-10 E & F [6], 
- BudgetSensors® AiO-Al A, B & C [7], and 
- Nanosensors® PPP-LFMR [8]. 
In fact, the calibration of the probes’ normal and lateral 

sensitivity yields their stiffness and resonant frequencies, 
allowing to determine the magnitude of the normal loads with 
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respect to the set-point voltage VSP of the z-axis of the SPM’s 
piezoelectric actuator, as shown in Table 1. 
 

Table 1 Calibrated normal load (FN) value ranges for six different probes 
at variable set-point voltages (VSP) of the SPM’s z-axis piezoactuator 
 

 Calibrated normal load FN /µN 

VSP 
/V 

MSNL-
10E 

MSNL-
10F 

Aio-Al 
A 

Aio-Al 
B 

Aio-Al 
C 

PPP-
LFM
R-10 

1 0.007 0.03 0.044 0.2 0.282 0.24 

2 0.015 0.06 0.088 0.4 0.564 0.481 

3 0.022 0.091 0.132 0.6 0.846 0.722 

4 0.03 0.121 0.176 0.8 1.129 0.963 

5 0.038 0.152 0.22 1 1.411 1.204 

6 0.045 0.182 0.264 1.2 1.693 1.445 

7 0.053 0.212 0.308 1.4 1.976 1.686 

8 0.061 0.243 0.352 1.6 2.258 1.927 

9 0.068 0.273 0.397 1.8 2.54 2.168 

10 0.076 0.304 0.441 2.38 2.823 2.409 

11 0.084 0.334 0.485 2.631 3.105 2.65 

12 0.091 0.365 0.529 2.851 3.387 2.891 

 

Based on the performed calibration, probes AiO-Al A and B 
are, hence, selected for the measurements in the nano- and 
microranges of normal forces (FN), respectively. In fact, for the 
AiO-Al A probe the FN range for nanotribology measurements is 
from 10 to 450 nN, while the AiO-Al B probe is used in the FN 

range from 300 nN to 2.8 N. 
The lateral calibration of the selected probes is carried out at 

different FN values by employing Varenberg’s method [5] on the 
calibration grating TGF11 [9]. The obtained lateral calibration 
constants for the AiO-Al A and B probes are determined in this 
way to be 0.20 µN/V and 1.18 µN/V, respectively, with a 
standard deviation of ± 15 % [4]. 

To experimentally investigate the concurrent influence of the 
multiple studied process parameters on the studied single 
asperity contacts, the testing setup is designed to cover the 
ranges of normal loads FN = 10 … 2800 nN, of sliding velocities  
v = 5 … 3000 nm/s and of temperatures t = 20 … 80 °C. 

The measurements are carried out at different temperatures 
in air, as measured by using the Bruker® Temperature 
Applications Controller (TAC), while the relative humidity in the 
enclosure of the used SPM device is constantly monitored via a 
Texas Instruments® humidity sensor coupled to an Arduino 
microcontroller logged to a personal computer (PC). The values 
of relative humidity could, therefore, be maintained throughout 
the measurements at 45 % ± 1 %. The humidity in the 
surrounding during the measurements is important due to its 
impact on the adhesive forces between the probes’ tip and the 
studied samples. The measurement of the variable temperature 
permits, therefore, determining the resulting adhesion forces, 
which, in turn, allows superimposing these forces to the applied 
normal loads, according to the methodology thoroughly 
described in [4]. 

The set of measurement points in the multidimensional 
experimental design space is determined herein by employing 
the centroidal Voronoi tessellation (CVT) sampling method [10, 
11]. This design of experiments (DoE) methodology is applied to 
the experimental part of the executed study by defining 50 
measurement points in the multidimensional experimental 
variable space for different triplets of the FN, v and t values, and 
obtaining the resulting frictional forces (Ff). The measurements 
are repeated 5 times in each measurement point, resulting in a 
total of 250 measurements. 

The average values of the frictional force for each of the 50 

CVT-based measurement points in the considered experimental 
space are colour coded in Figure 1. It could thus be determined 
that the range of the measured frictional forces is from 52.5 to 
979.37 nN. 
 

 
 

Figure 1. Values of experimentally determined frictional forces Ff for the 
50 measurement points in the CVT-based DoE experimental space 
 

Besides the measured values in the CVT-based points, the 
measurements are conducted for a separate set of 20 points 
within the same ranges of variable parameters, with, again, 5 
repetitions for each point. This separate measurement set is 
used for the subsequent validation of the developed ML models 
in an “unseen” dataset that must be different from the initial 
CVT-based one on which the models will be trained. The dataset 
for these 20 points is defined by employing the Monte Carlo 
(MC) method [12], which provides a random sampling of the 
population within the defined limits of each of the variable 
parameters. It provides, thus, measurements for random FN, v 
and t triplet values aimed at assessing the ML models’ predictive 
performances in a realistic way. The hence obtained average 
values of the measured Ff values in the MC-based testing dataset 
are shown colour-coded in Figure 2. 
 

 
 

Figure 2. Values of experimentally determined frictional forces Ff for the 
20 measurement points in the MC-based testing dataset 
 

Analytical methods are additionally required to achieve a 
more profound understanding on how the frictional force values 
Ff, derived from LFM measurements, are influenced by the 
variation of the process parameters. Statistical analyses serve, in 
fact, as a foundational tool, providing benchmarks and 
guidelines for subsequent numerical investigations. 

The correlation matrices, generated via the known Pearson’s 
product moment correlations (PPMC) [10] on the collected Ff 



  

 

data, are therefore presented in Tables 2 and 3 for the 
measurements in the CVT- and in the MC-based measurement 
points, respectively. A correlation coefficient of 1 or -1 indicates 
here a perfect linear correlation, with positive values reflecting 
a direct proportional relationship, and negative values indicating 
an inverse one. Higher absolute values mean, in turn, a stronger 
correlation, while values close to zero suggest a lack of 
correlation. 

The data in Table 2 reveal that sliding velocity v has a small 
negative effect on the nanoscale frictional force, evidenced by a 
low correlation coefficient of - 0.150. Normal load FN and 
temperature t exhibit, conversely, more significant effects, with 
the normal loads demonstrating a strong positive correlation, 
which aligns well with established friction models [1]. 
 

Table 2. Matrix of correlation coefficients for the influencing parameters 
on Ff for the CVT measurement points 
 

  t FN v Ff 

t 1    

FN - 0.060 1   

v 0.042 - 0.110 1  

Ff 0.229 0.857 - 0.150 1 

 

The correlation matrix obtained for the MC-based 
measurements (Table 3), also confirms a high positive impact of 
the normal loads on the frictional force, while, in contrast to the 
values obtained for the CVT dataset, the effect of v suggests 
higher positive values. This corroborates once more the 
stochastic nature of friction. In contrast to the CVT correlations, 
the MC-based correlation of Ff to t shows, moreover, a lower 
positive impact, suggesting that the sample used in the MC case 
was probably drier, and thus the surface-adsorbed layer of water 
resulted in a smaller meniscus effect on the single asperity 
contact. 
 

Table 3. Matrix of correlation coefficients for the influencing parameters 
on Ff for the MC measurement points 
 

  t FN v Ff 

t 1    

FN 0.187 1   

v 0.343 0.200 1  

Ff 0.035 0.947 0.281 1 

 

To further explore the influence of each of the variable process 
parameters on the nanoscale frictional forces Ff, and with the 
aim of obtaining suitable predictive models, the experimental 
data will, therefore, be used next to train various ML algorithms. 

3. Modelling methodology 

Various ML algorithms are used in this work: multi-layer 
perceptron (MLP), random forest (RF) ensembles, and support 
vector regression (SVR), whose salient features have been 
outlined in previous art [10, 13]. The respective models are 
developed by using the Scikit-learn [14] and MatLab® 
implementations. All the used ML methods are therefore used 
to develop nanoscale friction models for the considered sample 
material via the following steps [10]: 

- data preparation (normalization, standardization), 
- training of the algorithms on the experimental (CVT-based) 

datasets, and 
- optimization of their characteristic hyper-parameters. 
The metrics used for the evaluation of the thus developed 

models’ predictive performances are mean absolute errors 
(MAE), root-mean square errors (RMSE), and coefficients of 

determination R2 [10, 15]. The values of the hence attained 
predictive results (metric values) on the testing (MC-based) 
dataset are reported in Table 4, where R2 is selected to be the 
most dominant (but not exclusive) metric, with values of R2 
above 0.7 considered as good predictive performances. It can be 
seen here that the predictive performances of all the developed 
ML models show similar high predictive performances, with the 
RF algorithm being slightly better - thus allowing to predict 81 % 
of the variance of the nanoscale frictional force values  
(R2 = 0.814). 
 

Table 4. Comparison of predictive performances on the test (MC-based) 
dataset for the used ML models of nanoscale friction 
 

Algorithm RMSE MAE R2 

MLP 397.35 345.66 0.765 

RF 290.48 235.97 0.814 

SVM 170.01 89.70 0.660 

4. Results and discussion 

The predictive performances of all trained ML models are 
shown in Figure 3 in comparison to the average measured 
frictional force values Ff obtained for the 20 MC-based 
experimental points, i.e., the “unseen” dataset, providing an 
assessment benchmark. It can be observed that all developed 
ML models, despite their relatively high R2 performance metric, 
result in over-estimated Ff values for most of the measurement 
points. In fact, around 75 % of measured data is over-estimated 
by even up to 200 % by all the models, even though the general 
trend is following positively the experimental data. This clearly 
confirms that the predictive performances of the ML models for 
such complex and stochastic phenomena, as is nanometric 
friction, is hard to assess with statistical methods, and the 
conventional performance metrics provide merely an indication 
of the quality of the trend-following capabilities of the predictive 
models. 
 

 
 

Figure 3. Values of the predicted and the experimentally measured Ff 
values for the 20 measurement points in the MC-based testing dataset 
 

What is more, although according to the R2 metric the best 
predictive model is RF, it still exhibits significant oscillations in 
the predicted values, albeit to a smaller degree than the MLP 
model. The SVR model exhibits, in turn, the smoothest 
prediction, even though its R2 value is the lowest. Therefore, SVR 
would seem to have the highest potential to be further refined 
by using more experimental data for its training. 
  



  

 

5. Conclusions and outlook 

By applying black-box machine learning models to 
experimentally gathered nanotribological data, an analysis of 
multiscale and multiparametric nano- and micrometric frictional 
behaviour of alumina thin films, produced via atomic laser 
deposition, is presented in this work. 

The obtained results reveal that it is feasible to effectively 
predict the concurrent effects of multiple process parameters on 
the frictional forces, achieving satisfactory accuracy levels, with 
R² values ranging from 0.66 to 0.81. The developed machine 
learning models provide therefore solid basis for further 
modelling endeavours employing artificial intelligence (AI) 
models, which could potentially provide further insights into the 
complex interactions of the diverse parameters influencing 
nanoscale friction. 

The performed research presents, finally, a glimpse to the 
experimental and modelling intricacies involved in studying 
nanofrictional phenomena, which need to be investigated 
further to obtain the insights required for ultra-high precision 
positioning applications. 
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