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Abstract 
The 2019 redefinition of the kilogram in the International System of Units, SI (Système International) through electrical metrology 
enables the direct realization of mass using precision balances. In an effort to extend the SI redefinition to new units of measure, 
next generation radionuclide metrology based on quantifying individual decay processes using superconducting transition edge 
sensors is developing. These methods require a cubic mm-scale liquid radionuclide solution sample. An electrostatic force balance 
can be used to measure the mass of this liquid, as required for a full traceability chain. This paper discusses the theory and 
experimental determination of the capacitance gradient of the electrodes of flat and spherical geometry used in an electrostatic force 
balance, including the treatment of the shield electrode and surface potentials. 
 

 

Introduction  

Standard Reference Materials for radio activity, the Becquerel, 
are supplied as aqueous solutions of specific radionuclides 
characterized by massic activity in the units becquerel per gram 
of solution, Bq kg-1 [1]. To realize a new method of defining 
radionuclide standards, the National Institute of Standards and 
Technology (NIST) put forth the True Becquerel project, creating 
a new paradigm for the realization and dissemination of 
radionuclide standards [2]. This project involves the 
development of an electrostatic force balance that measures 
absolute force, which is traceable to the SI, to determine the 
mass of a milligram-scale liquid radionuclide sample. The 
balance uses an electrostatic force generated by the capacitor 
electrodes, to compensate for the gravitational force of the 
radionuclide solution to maintain an equilibrium. The 
electrostatic force is calculated by the voltage applied to the 
electrodes and the capacitance gradient as a function of the gap 
between the electrodes. Since the goal of the balance is to 
measure mass with an uncertainty of less than 0.1 % for k = 2, 
the uncertainty in the capacitance gradient must be smaller. The 
analysis of the chosen guarded sphere-flat capacitor geometry 
follows. 
 

1. Capacitor design 

In an electrostatic force balance, the gravitational force of the 
mass is compensated by an electrostatic force, generated by a 
capacitor. Knowing the characteristic of the capacitor and the 
applied voltage, the balance can be used as a primary force 
standard to measure absolute force without the need for 
calibration. The capacitor is arranged in a sphere-flat 
configuration see figure 1. 
The sphere electrode is made from a non-magnetic 316 series 
stainless steel ball, while the flat electrode is a gold coated 
optical window with a flatness of λ/10 with λ = 632.8 nm. The 
sphere electrode is fixed below the moving flat electrode in an 

electrically isolated configuration from surrounding parts. The 
flat electrode is connected to the guide mechanism of the 
electrostatic force balance and travelling along the x-axis, which 
changes the separation between the electrodes. To control the 
balance position during mass measurements, an interferometer 
beam is reflected from the top surface of the flat electrode. Due 
to the small manufacturing tolerances of the ball and optical 
window geometry, both the sphere and flat electrodes can be 
considered ideal. The use of a sphere-flat capacitor offers 
several advantages. The capacitance of the balance remains 
constant for transverse displacements in the z and y directions, 
even in the presence of thermal expansion or vibrations of the 
sphere or flat electrode. Additionally, the capacitance changes 
negligibly with angle, reducing the need for adjustments and 
minimizing noise and drift. As a result, only the angular 
alignment of the flat electrode to gravitational vector is relevant 
for mass measurement. To ensure accurate measurement of 
capacitance, a cylindrical guard surrounds the sphere, shielding 
the electrical field from other parts which are connected to the 
balance guide mechanism.  
 

 
Figure 1. Cross sectional view of the design of sphere-flat capacitor 

which is integrated in an electrostatic force balance. 1 Sphere 
electrode, 2 Flat electrode, 3 Shield, 4 Interferometer Beam, 5 Isolation 
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2. Analytical description of the capacitor system 

2.1. Three electrode system 
The electrostatic force of the capacitor is given by  
 

 𝐹 = − 
𝑑𝑊

𝑑𝑥
 (1) 

 
Where W is the energy, stored in the capacitor and x the 
displacement of the flat electrode. The energy of an enclosed 
electrostatic system is given by the following equation 
 

 𝑊 =
1

2
𝑽𝑇𝑪𝑽 (2) 

 
where V is a column vector of the sum of the applied and surface 
potentials, and C is a matrix of self and mutual capacitance [5-
6]. Since the capacitance is a function of x, the force can be 
written as  
 

 𝐹 = − 
1

2
𝑽𝑇

𝑑𝑪

𝑑𝑥
𝑽 (3) 

 
To calculate the electrostatic force, one can formulate the 
voltage vector V and capacitance matrix C of the system. The 
capacitance can be described as an 𝑁 x 𝑁 matrix where N=3 is 
the number of electrodes. The capacitance matrix with elements 
𝐶𝑖𝑗, where 𝑖, 𝑗 ∈ = {1,2,3}, is written as 

 

 𝑪 = (
𝐶11 𝐶12 𝐶13

𝐶21 𝐶22 𝐶23

𝐶31 𝐶32 𝐶33

) (4) 

 
and contains the self-capacitances for 𝑖 =  𝑗 and the mutual 
capacitances for 𝑖 ≠  𝑗.  
 
Considering that: 

• The matrix is symmetric:  𝐶𝑖𝑗 = 𝐶𝑗𝑖   

• The system is closed:  𝐶𝑖𝑖 = ∑ 𝐶𝑖𝑗𝑖 ≠ 𝑗   

• Measured cross-capacitance is  𝐶𝑐𝑖𝑗 = −𝐶𝑖𝑗 

negative mutual capacitance 
 
[7] the matrix which describes the capacitance of the three-
electrode capacitor can be written as  
 

 𝑪 = (
𝐶𝑐12 + 𝐶𝑐13 −𝐶𝑐12 −𝐶𝑐13

−𝐶𝑐12 𝐶𝑐12 + 𝐶𝑐23 −𝐶𝑐23

−𝐶𝑐13 −𝐶𝑐23 𝐶𝑐13 + 𝐶𝑐23

) (5) 

 
The potential vector 𝑽 is a 𝑁 x 1 vector  
 

 𝑽 = (
𝑉1

𝑉2

𝑉3

) (6) 

 
To calculate the force, the capacitance matrix and potential 
vector in equation (3) can be substituted with equation (5) and 
(6). For 𝑉2 =  𝑉3 = 0, the force can be written as  
 

 𝐹 = −
1

2
𝑉1

2 ( 
𝑑𝐶𝑐12

𝑑𝑥
+ 

𝑑𝐶𝑐13

𝑑𝑥
) (7) 

 
 
 

2.2. Surface potential in three electrode system 
The voltage measured in an electrostatic force balance includes 
both the voltage causing the force and a surface potential 𝑽𝒔 
from patch effect and surface contaminants. Therefore, the 
voltage vector of the system can be written as 
 

 𝑽𝑚 = 𝑽 + 𝑽𝑠 = (
𝑉1 + 𝑉1𝑠

𝑉2 + 𝑉2𝑠

𝑉3 + 𝑉3𝑠

) (8) 

 
For the measured force where 𝑉2 =  𝑉3 = 0, 
 

𝐹𝑚 = −
1

2
[(𝑉1 + 𝑉1𝑠)2 + 𝑉2𝑠(𝑉2𝑠 − 2𝑉1 − 2𝑉1𝑠)] 

𝑑𝐶𝑐12

𝑑𝑥
 

           −
1

2
[(𝑉1 + 𝑉2𝑠)2 + 𝑉3𝑠(𝑉3𝑠 − 2𝑉1 − 2𝑉1𝑠)] 

𝑑𝐶𝑐13

𝑑𝑥
 

           −
1

2
(𝑉2𝑠 − 𝑉3𝑠)2  

𝑑𝐶𝑐23

𝑑𝑥
 

(9) 

 
The difference in measured voltage 𝑉𝑚 and 𝑉1, would result as a 
bias in the measured force 𝐹𝑚. This bias can be eliminated by 
reversing the polarity of the voltage, and a differential force 
measurement. The correction for surface potential follows a 
similar method developed for a two-electrode system [8], 
adapting it to a three-electrode capacitor. Since the balance is 
controlled at the same position when we apply a positive or 
negative potential, the force and therefore the absolute value of 
𝑉1 can be assumed as the same in both cases. The measured 
Voltage for a positive applied voltage 𝑉𝑈𝑚+ and negative applied 
voltage 𝑉𝑈𝑚− for an unloaded case of the balance is therefore 
 

 𝑉𝑈𝑚+ = (
𝑉1𝑈 + 𝑉1𝑠

𝑉2𝑈 + 𝑉2𝑠

𝑉3𝑈 + 𝑉3𝑠

)         𝑉𝑈𝑚− = (
−𝑉1𝑈 + 𝑉1𝑠

−𝑉2𝑈 + 𝑉2𝑠

−𝑉3𝑈 + 𝑉3𝑠

) (10) 

 
Substituting equation (10) and (5) in equation (3) leads to 
 

𝐹𝑈𝑚+ = −
1

2
[(𝑉1𝑈 + 𝑉1𝑠)2 + 𝑉2𝑠(𝑉2𝑠 − 2𝑉1𝑈 − 2𝑉1𝑠)] 

𝑑𝐶𝑐12

𝑑𝑥
 

                −
1

2
[(𝑉1𝑈 + 𝑉1𝑠)2 + 𝑉3𝑠(𝑉3𝑠 − 2𝑉1𝑈 − 2𝑉1𝑠)] 

𝑑𝐶𝑐13

𝑑𝑥
 

                −
1

2
(𝑉2𝑠 − 𝑉3𝑠)2  

𝑑𝐶𝑐23

𝑑𝑥
 

(11) 

 

𝐹𝑈𝑚− = −
1

2
[(𝑉1𝑈 − 𝑉1𝑠)2 + 𝑉2𝑠(𝑉2𝑠 + 2𝑉1𝑈 − 2𝑉1𝑠)] 

𝑑𝐶𝑐12

𝑑𝑥
 

                −
1

2
[(𝑉1𝑈 − 𝑉1𝑠)2 + 𝑉3𝑠(𝑉3𝑠 + 2𝑉1𝑈 − 2𝑉1𝑠)] 

𝑑𝐶𝑐13

𝑑𝑥
 

                −
1

2
(𝑉2𝑠 − 𝑉3𝑠)2  

𝑑𝐶𝑐23

𝑑𝑥
 

(12) 

 
By averaging the positive and negative polarity, the cross terms 
2𝑉1𝑈𝑉1𝑠, 2𝑉1𝑈𝑉2𝑠 and 2𝑉1𝑈𝑉3𝑠 are eliminated, resulting in 
 

𝐹𝑈𝑚𝑎 = −
1

2
[𝑉1𝑈

2 + (𝑉1𝑠 − 𝑉2𝑠)2] 
𝑑𝐶𝑐12

𝑑𝑥
 

                −
1

2
[𝑉2𝑈

2 + (𝑉1𝑠 − 𝑉3𝑠)2] 
𝑑𝐶𝑐13

𝑑𝑥
 

−
1

2
(𝑉2𝑠 − 𝑉3𝑠)2  

𝑑𝐶𝑐23

𝑑𝑥
 

(13) 

 
An analogous expression can be obtained for the balance’s 
loaded state where a mass is placed on the balance 
 
 
 



  

𝐹𝐿𝑚𝑎 = −
1

2
[𝑉1𝐿

2 + (𝑉1𝑠 − 𝑉2𝑠)2] 
𝑑𝐶𝑐12

𝑑𝑥
 

               −
1

2
[𝑉2𝐿

2 + (𝑉1𝑠 − 𝑉3𝑠)2] 
𝑑𝐶𝑐13

𝑑𝑥
 

−
1

2
(𝑉2𝑠 − 𝑉3𝑠)2  

𝑑𝐶𝑐23

𝑑𝑥
 

(14) 

 
By calculating the difference in force during unloaded and 
loaded cases, the surface potential terms (𝑉1𝑠 − 𝑉2𝑠)2, (𝑉1𝑠 − 𝑉3𝑠)2 

and (𝑉2𝑠 − 𝑉3𝑠)2 cancels and the gravitational force of the mass 
can be written as 
 

 𝐹𝑚𝑎𝑠𝑠 = 𝐹𝐿𝑚𝑎 −  𝐹𝑈𝑚𝑎 =  −
1

2
(

𝑑𝐶𝑐12

𝑑𝑥
+

𝑑𝐶𝑐13

𝑑𝑥
) (𝑉1𝐿 − 𝑉1𝑈)2 (15) 

 
The above derivation shows that the bias caused by a constant 
surface potential is compensated, and the gravitational force of 
the mass is calculated as 
 

 𝐹𝑚𝑎𝑠𝑠 =
𝐹𝐿𝑚+ + 𝐹𝐿𝑚−

2
−

𝐹𝑈𝑚+ + 𝐹𝑈𝑚−

2
 (16) 

 
2.3. Reduction to two electrode system  
To avoid the measurements of two capacitance gradients 
𝑑𝐶𝑐12/𝑑𝑥 and 𝑑𝐶𝑐13/𝑑𝑥, and the uncertainty in these 
measurements., it is preferred to reduce the number of 
electrodes in the system to two. By electrically connecting 
electrode two, the flat surface, and electrode three, the shield, 
the mass can be calculated as 
 

 𝐹𝑚𝑎𝑠𝑠 = 𝐹𝐿𝑚𝑎 − 𝐹𝑈𝑚𝑎 =  −
1

2
(

𝑑𝐶𝑐12

𝑑𝑥
) (𝑉1𝐿 − 𝑉1𝑈)2 (17) 

 

3. Fitting function for capacitance  

From equation (17), any deviation in capacitance gradient has a 
proportional effect on the force. Since the goal of the 
electrostatic force balance is to measure mass with an 
uncertainty of less than 0.1 % for k = 2, the deviation between 
the capacitance gradient and the fitting function to estimate its 
value must be small. 
The balance is moved in steps of 2 µm using a voice coil actuator 
and the capacitance is measured at each step. The position for 
each step can be controlled with an uncertainty of less than 25 
nm while the capacitance is measured with an uncertainty of 
15 aF. Assuming that a linear fit between these small increments 
is close to the true capacitance gradient allows us to compare 
the fitting functions. The grey dots in the first plot of figure 2 are 
the measured capacitances, while the second shows the linear 
capacitance gradient which is assumed as the true value. To 
reduce the drift effects, the capacitance is only measured at few 
positions during a regular measurement. For the current 
analysis, a subset of the measured data points is chosen for the 
input to the fitting functions, as shown by the black data points 
in figure 2. The figures show fitting functions in solid lines of 
different colours, their derivative, and the deviation from the 
capacitance gradient in percent. The chart illustrates that a 
polynomial fit does not describe the capacitance behaviour well 
enough. Therefore, Maxwell’s equation describing a sphere-flat 
capacitor is used [9]. 
 

 𝐶 = 4𝜋𝜀𝑟 ∑
sinh(ln(𝐷 + √𝐷2 − 1))

sinh(𝑛 ln(𝐷 + √𝐷2 − 1))

∞

𝑛=1

           𝐷 =
𝑟 + 𝑥𝑔

𝑟
 (18) 

 
Where 𝜀 is the permeability of air, 𝑟 the radius of the sphere and 
𝑥𝑔 the gap between the sphere and flat surface. Maxwell’s 

equation does not describe the capacitance and its gradient 
completely since the sphere electrode is surrounded by a shield. 
This deviation can be minimized by adding a polynomial term to 
this equation, leading to a function resulting in the smallest fit 
residual.  
 

 
Figure 2. Comparison of the measured capacitance and the fitting 

function. (a) shows measured Capacitance, (b) shows the capacitance 
gradient calculated with various fitting functions, (c, d, e, and f) show 

fit residuals for the 3rd and 5th order polynomial, Maxwell, and 
combined Maxwell/5th order polynomial fits, respectively.  

 
The noise in the relative residual is due to the noise during the 
capacitance measurement of 2 µm increments. The closeness of 
the fit depends on the range x and the number of positions the 
capacitance is measured. Linear or polynomial fits work better 
for a reduced range of x and increasing the number of positions 
where capacitance is measured. However, the uncertainty in 
capacitance gradient would increase for a smaller range. Also, 
the number of positions where the capacitance is measured and 
the time for each measurement should be as small as possible 
to minimize drift.  
 

4. Drift in capacitance 

To estimate the effect of drift in the capacitance gradient 
measurement, a measurement was done over a time span of 60 
hours under stable laboratory conditions while the position of 
the balance was controlled to a setpoint using the voice coil 
actuator.  
Each datapoint in the timeseries data of figure 3 is a 
simultaneous measurement of position, capacitance or 
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temperature averaged over 3 minutes. Since the standard 
deviation in capacitance over 3 minutes is about 15 aF, the drift 
is not significant for the current measurements. Therefore, the 
capacitance measurement time can be increased.  
 

 
Figure 3. Drift of capacitance over time  

 
The optimum found by an Allan deviation plot is about 15 
minutes, see Figure 4. 
 

 
Figure 4. Allan variance of capacitance data 

 

5. Conclusion 

This paper discusses the capacitance analysis of a shielded 
sphere-flat capacitor used in an electrostatic force balance for 
mass metrology. The goal of this project is to develop a method 
for realizing and disseminating radionuclide standards. The 
electrostatic force balance is designed to measure the mass of a 
milligram-scale liquid radionuclide sample with a relative 
uncertainty of less than 0.1 %. The paper describes the design of 
the capacitor, the analytical description of the systems 
capacitance and the experimental determination of the 
capacitance and its gradient, using fitting functions. The 
advantages of using a sphere-flat capacitor in the balance are 
highlighted, including its constant capacitance for transverse 

displacements, negligible capacitance changes with angle, and 
reduced drift. Using a third electrode to shield and concentrate 
the electrostatic field which improves the capacitance 
measurement, but still allows for surface potential 
compensation using the reversed polarity method. To find the 
optimum number of measurements and measurement time for 
the capacitance gradient measurement, further investigations 
can be performed. 
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