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Abstract 
In modern markets, increasing quality requirements require high performance quality assurance processes which guarantee the 
fulfillment of these requirements sustainably. The quality assurance must therefore be able to take targeted countermeasures in the 
event of deviations. It is becoming increasingly decisive to achieve quality with minimum resource expenditures, increasing the 
importance of quality control loops. Currently, however, a great deal of manual effort goes into the design and implementation of 
the mostly knowledge-based control logics due to the heterogeneous data landscape and the resulting data preparation processes. 
Autonomous quality control loops represent a new development and are intended to provide an efficient and data-based approach 
to setting up quality control loops. According to the "plug and play" principle, the control system should be operational with a 
minimum of resources in order to enable precision engineering. Prerequisites for such autonomous systems are homogeneous data 
structures and models for the holistic representation of quality data, which make individual data preparation processes obsolete. In 
addition, individual process models must also be replaced by suitable data-based, learning modeling methods. In the following 
approach, the fundament for a holistic quality data model is developed on the basis of various interviews with diverse companies 
active in the field of metal-cutting and additive manufacturing. The data model is represented using the Asset Administration 
Standard of the I4.0 platform. In addition, machine learning approaches in the area of machining and additive manufacturing are 
analyzed for the general modeling of the correlation between process parameters and the quality result, in order to be able to 
develop a holistic concept for autonomous quality control on this basis in the next step. 
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1. Motivation 

Major challenges facing modern production include volatility-
increasing trends such as increasing product individualization 
and difficult-to-predict demand scenarios that influence unit 
quantities and quality requirements. Accordingly, companies 
can only survive the unforgiving competition if they confront the 
aforementioned change scenarios in an agile manner with 
efficient and reconfigurable production systems that are capable 
of efficiently enabling immature processes. This should shorten 
ramp-up phases and enable newly configured production 
systems to start up quickly [1, 2].  

In order to be able to control quality requirements efficiently 
and with minimum scrap production, a holistic quality 
management in the company is indispensable [3]. An important 
part of quality management is the precise recording of defined 
quality characteristics of manufactured products. Today, data 
acquisition still often takes place in remote measuring rooms, 
which entail a high dead time when it comes to catching drifting 
quality characteristics and readjusting processes. Accordingly, it 
makes sense to bring measurement technology closer to the 
manufacturing process and to increase the degree of 
integration. A distinction is made between measurement 
technology that is remote from production, close to production, 
inline, machine-integrated and in-process [4]. Quality control 
loops built on this basis are nowadays implemented with a high 
manual effort and exhibit static characteristics. For effective and 
short-cycle control, however, the control dead time due to the 

long data acquisition paths and the manual effort required to set 
up quality control loops must be minimized [5].  

The transformation scenarios mentioned before force quality 
control systems to adapt to reconfigured production systems 
and dynamic product portfolios. This requires measurement 
technology with a high degree of integration, generic as well as 
adaptive quality control logics, and a high and, above all, 
standardized data availability. We define Autonomous Quality 
Control as a quality control concept considering these factors.  

2. Autonomous Quality Control Loops 

Quality control loops are closed-loop control systems which, 
on the basis of measured quality and/or process data, calculate 
process parameters of the considered, feature-generating 
process by optimizing the quality characteristics by means of an 
implicit or explicit logic [6]. For the uniform description of quality 
control loops and their suitable decomposition, the analogy to 
control loops from measurement and control technology is 
established. For the exact structure of the analogy, reference is 
made to the work of  Schick et al. [5]. Figure 1 shows the 
schematic structure of this control loop. 

The center of the quality control loop is the quality controller. 
It contains implicit or explicit logic that describes the correlation 
between the control variables of the process and the quality 
result. With this correlation, the quality control is obtained for 
the optimization of a quality function 𝑄(𝑃1, 𝑃2, … , 𝑃𝑛), which can 
depend on various parameters [6]. Formally described this 
means  
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where a higher value for the function 𝑄(𝑃1, 𝑃2, … , 𝑃𝑛) would 
correlate with a better quality result. The vector 𝑃𝑜𝑝𝑡 describes 

the globally optimal parameter combination for improving the 
quality result.  
Depending on the complexity of the system under 
consideration, the mathematical/physical modeling for the 
design of the quality controller requires a great deal of manual 
effort. In addition, in almost all cases the input data used must 
be pre-processed in order to make them available to the 
controller in a suitable manner [7].  

This is where the concept of Autonomous Quality Control 
comes in: Autonomy is to be achieved through data-based and, 
if possible, process-independent modeling for correlation 
description as well as standardized provision of quality and 
process data. This requires a uniform description for the holistic 
mapping of quality data. Such a data model makes it possible to 
deploy quality control loops much more efficiently, to adapt 
process parameters directly on a bilateral basis, and at the same 
time to transfer logic that has been developed to other systems 
with little effort. 

2.1 Quality Data Model based on Asset Administration Shell 

In recent times, there have been significant advancements in 
data collection and utilization techniques that have enabled the 
adoption of holistic data models in product and production 
development processes aiming more efficient data exchange. 
This has been made possible by the introduction of open 
standards for model-based definition, such as STEP AP 242 and 
QIF 3.0. These developments have equipped engineers with a 
wealth of data to enhance the development and optimization 
processes [8]. The QIF (Quality Information Framework) 3.0 
framework was developed by the Digital Metrology Standards 
Consortium (DMSC TM). It is a data exchange standard that is 
used in the manufacturing industry to facilitate the sharing of 
quality measurement data between different software systems 
and applications. The QIF 3.0 Framework allows seamless 
transfer of data between different software tools and 
applications that are used in the design, manufacture, and 
inspection of products. Specifically, it defines a standardized set 
of XML-based data models, schemas, and vocabularies that are 
used to describe various aspects of quality measurement data, 
such as measurement features, measurement plans, 
measurement results, and statistical process control data [9]. 

The STEP AP 242 standard focuses more on design data  and 
does not regard inspection information like QIF [10]. 

In addition, commercial CAQ software exists that is closed 
source and not publicly accessible. Accordingly, the important 
criterion of interoperability is not given. 

The concept of the asset administration shell (AAS) is suitable 
for building such a standardized and holistic mapping of quality 

too and offers various advantages compared to conventional 
approaches of data modelling. The AAS technology is of 
outstanding importance in the Industrie 4.0 landscape, as it is 
seen as the cornerstone of interoperability in this context [11]. 
Both the information model and the interface of the AAS are 
standardized and can handle all heterogeneous systems present 
in the industrial environment [12]. Because the AAS is an 
abstraction that provides a common structure for plant-related 
information and a common consensus for exchanging that 
information [9], it enables interoperability among the 
production infrastructure consisting of different technologies 
[11].  Currently there is no approach which models quality data 
in the context of providing data more efficiently for quality data 
based applications like quality control loops. The great potential 
behind the usage of AAS technology, especially regarding 
interoperability, scalability as well as standardization potential 
across various productions systems  is to be uncovered within 
the framework of this scientific elaboration. 

In the following, the relevant components will be determined. 
The structure of the Asset Administration Shell is specified by the 
Federal Ministry for Economic Affairs and Climate Action 
(BMWK) [13]. The aim of efforts in this area is to create a 
common communication consensus on the base of which 
information about assets and I4.0 components can be 
exchanged in a meaningful way [13]. In addition, this defines the 
structure of the data modeling and all its components. Figure 2 
shows the respective components in a UML diagram. In this 
context, the quality data model can be regarded as an asset in 
its own right, consisting of various submodels. The I4.0 platform 
defines an asset as: "physical or logical object owned by or under 
the custodial duties of an organization, having either a perceived 
or actual value to the organization" [13].  The logical 
decomposition of the data model takes the form of submodels 
that reside in the AAS. Submodels are defined as "models that 
are technically separate from each other and are contained in 
the Asset Administration Shell" [13].  
In order to identify submodels of quality, interviews were 
conducted with quality departments of 4 different, 
manufacturing companies as part of a practice-oriented 
approach. The aim was to determine from a practical 
perspective which data are relevant in the context of quality 
assurance processes and quality control systems and how these 
data can be made available: 
First, it makes sense to divide quality data into quality features. 
Since resources used (e.g., lathes) and the respective processes 
(e.g., milling) must also be taken into account for holistic quality 
control, these quality features should be linked to 

Figure 2: Components and hierarchy of the AAS [1] 
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Figure 1: Quality Control Loop (wbk – Institute for Production Science) 



  

manufacturing steps. Each manufacturing step that is passed 
through to create a product generates quality characteristics 
that must meet certain requirements. In the level below, all 
features are to be stored with the respective required 
information. These can be divided into three categories: First, 
Target-State. Second, Actual-State and third, Specifications for 
the metrological recording of the quality feature 

 
Target-State 
The target state of a quality characteristic is determined on the 
basis of a nominal feature definition which consists of a value 
and a unit. Since no manufacturing process is 100% accurate, 
relative or absolute tolerance limits are also required. A 
characteristic type (e.g. dimensional tolerance or form 
tolerance) enables a better classification of the quality feature. 
 
Actual-State 
The actual condition of the quality feature includes first of all the 
recorded actual value of the measurement. Furthermore, it 
should be recorded at which time the measurement was carried 
out, which part number the manufactured part has and 
additionally whether the characteristic is i.o. or n.o..  
 
Specifications for the metrological recording of quality features 
In order to avoid a 100% inspection, the principle of 
representative sample analysis is defined within the concept of 
statistical process control, which most manufacturing 
companies make use of. In this process, defined samples are 
taken from the manufactured products and conclusions are 
drawn about the process based on these partly made 
measurements. The basic prerequisite for this is a controllable 
and stable process [14]. For a holistic quality data model, it is 
important to be able to map which sampling cycle and which 
sample size were defined. Apart from this, it has to be clear 
which inspection tool was used to carry out the measurement. 
Furthermore, it should be possible at this point to store further 
details about the measurement procedure. This can include, for 
example, measurement strategies and raw data from 
measurements with the coordinate measuring machines. At this 
point, however, a further specification is to be renounced for 
the purpose of preservation of the genericity in the data model.  
The result of these considerations is Table 3, in which all already 
described components of a quality data model are categorized. 
 
Table 1: Components of a holistic quality data model  

Target-State Actual-State Measurement 
specifications 

 Type 
 Nominal 

Value 
 Upper 

Tolerance 
 Lower 

Tolerance 

 Actual Value 
 Time of 

Measurement 
 Part Number 
 Feature 

i.O./n.O. 

 Measurement 
Equipment 

 Sample Size 
 Sample Cycle 
 Further 

Specifications 

2.2 Data-based Correlation Analysis for Model Approximation 

A prerequisite for autonomous quality control is the efficient, 
data-based correlation analysis of the cause-effect relationship, 
in particular between process parameters and the resulting 
quality outcome. As already described, conventional quality 
control loops require a lot of manual effort to define this 
relationship mathematically and/or physically by incorporating 
explicit domain knowledge. Machine learning methods such as 
artificial neural networks are particularly suitable for this 
purpose as a form of implicit function approximators. Here, only 

the procedure for learning is specified without introducing 
explicit knowledge about the process [15]. Challenges are the 
acquisition of a good database and also the computational 
effort. In most cases, several parameters simultaneously have an 
influence on the resulting quality result [16]. 

In the context of these considerations, 3 existing, 
representative approaches with different focuses will be 
investigated that identify data-based correlations in 
manufacturing processes and build an approximated model 
based on these correlations. The state of the art shall support to 
better evaluate the performance of ML methods in this context 
and to identify which challenges take space in this context. 

Teutsch and Schenk [7] present an approach in their article 
"Quality Data Driven Production", which deals with the data-
based control of a milling process for the production of 
aluminum wheels. This is intended to cover different wheel 
types and basically represents a more generic approach to 
quality control for milling processes. 5000 data sets for 30 
different wheel types were analyzed. Each data set consists of 
81 geometric nominal and actual values. The goal is to predict 
the wheel quality at the end of the process based on different 
data analysis methods and prediction algorithms, among others 
consisting of an intelligent approach built on a neural network. 
It enables the prediction of a wheel-specific diameter as a 
function of the process temperature. An important finding from 
the observations is that data outliers significantly degrade the 
prediction quality, while creeping changes in process 
parameters can be well handled. Furthermore, the analyses 
show that prior filtering of outliers is of great importance to 
make the forecast accurate and reliable. 

In any case, tool wear correlates directly with the quality result 
of the manufactured product. An interesting approach to this 
was published by Wu et al. [17]. It deals with the prediction of 
tool wear during milling. Unlike classical approaches in this area, 
which usually make use of neural networks, Wu et al. resort to 
modeling using random forest (RF) techniques. The results are 
evaluated and compared with a feed-forward back propagation 
network and a support vector regression (SVR). The results are 
particularly interesting for this work, since the best possible 
process modeling quality is to be achieved and the comparison 
between ML-Methods provides performance statements about 
the respective models. The training data was generated in 
advance in an experiment by Huang et al. [18]. Here, for all three 
procedures, 2/3 of the data was used for training purposes and 
1/3 for testing purposes. The results show that all approaches 
have individual advantages and disadvantages: While SVR has 
the shortest training times, RF provides the highest quality 
results - but with relatively high training times. The neural 
network, on the other hand, performs in a balanced way and 
provides good results at short training times . In the context of 
the efficiency discussion for autonomous quality control loops, 
it must be taken into account that the training of the models in 
this approach has taken place on the basis of 315 million test 
data and that a lot of time has gone into the database 
generation. In many cases, such a good database is not available 
and if so, a great deal of effort must go into it. 

Another important use case of ML approaches for 
manufacturing processes is the field of additive manufacturing. 
In their paper on this topic, Meng et al. [19] address various use 
cases for ML in the field of Additive Manufacturing (AM). AM is 
particularly interesting because the process is highly dependent 
on various parameters, such as print head speed or layer 
thickness, as well as batch-dependent material properties. In 
addition, the change in the aggregate state of the material used 
and the high process temperatures as well as associated cooling 
processes complicate the considerations immensely. 



  

Accordingly, data-based approaches that do not require a 
detailed understanding of the process are particularly well 
suited [19]. Meng et al. [19] highlight that due to poor geometric 
reproducibility and insufficient surface finish, parts still cannot 
be used in industries such as aerospace. The freedom of shaping 
3-dimensional geometries in AM justify the great interest to get 
a better grip on the process. Accordingly, various ML 
approaches, but mostly neural networks, are used when it 
comes to detecting defects that occur and controlling process 
parameters depending on the resulting quality. For example, 
Francis and Bian [20] developed an approach for geometric 
defect compensation in the L-PBF process using an ML model 
with convolutional neural networks (CNN). Using the process 
temperature and some processing parameters as input, the 
trained ML model can predict the geometry difference, which is 
then imported into an existing CAD model in the reverse 
direction to achieve error compensation.  

From the analysis of the current state of the art, the following 
issues arise which are relevant for the elaboration of a more 
advanced approach for Autonomous Quality Control Loops: 

 Database: 
o How good is the database? 
o How can it be built up in an efficient way? 
o How can the database be cleaned without 

bringing in explicit knowledge? 

 Machine Learning Approach 
o Which approach should be selected 
o What ist he variation in result quality for 

different approaches? 
o When does explicit modeling of the process 

make more sense? 

3. Summary and Outlook      

Quality control loops hold great potential for automating 
quality assurance systems and reacting agilely to negative 
quality trends as well as supporting the ramp-up-phase in 
reconfigured production systems. In today‘s still ubiquitous, 
heterogeneous and complex data landscape and difficult-to-
model, multivariable-dependent processes, implementation is 
correspondingly complex. Producing companies are therefore 
deterred from any efforts. The establishment of a standardized 
data model for quality data to be evaluated and the data-based 
modeling of complex processes using ML methods counteract 
this and enable the design of autonomous systems for quality 
control. The foundation for this is laid in Chapter 2.  

In a next step, the findings will be combined to form a holistic 
approach to autonomous quality control. The goal is to develop 
a framework that is generic and that enables a process-
independent implementation of quality control. The quality data 
model based on the management shell standard combined with 
a machine learning algorithm for data-based correlation analysis 
between process parameters and the resulting quality outcome 
represent first steps in this direction.  

The developed solution has the potential to shorten ramp-up 
phases in production start-up, to make quality assurance 
processes more efficient, to minimize rejects and, in the best 
case, to establish a standard for the provision of quality data. 

The approach needs to be validated against a suitable 
industrial use case. An important part of the analyses will be the 
comparison to conventional quality control loops, which will 
focus on the control quality as well as the implementation effort. 
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