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Abstract 
In this study, 1800 ultrasonic images of human diaphragm were captured for training Mask R-CNN. Then, an ultrasonic image tracking 
algorithm (UITA) was developed to calculate the mean pixel coordinates of the diaphragm detected by Mask RCNN. The coordinates 
are further input to the Respiratory Motion Compensation System (RMCS) for compensation of breathing introduced motion. The 
tracking similarity verification experiment of M-UITA was performed. In the experiment, the correlation between the input signal and 
the signal tracked by M-UITA was compared, and the computed average discrete Fréchet distance was less than 4mm. A respiratory 
displacement compensation experiment was performed. The proposed method was compared to the UITA by calculating the 
compensation rates of three different respiratory signals. The experimental results showed that the compensation rate of the 
proposed method was at most 6.22% higher than that of UITA. This study proposed a novel method, M-UITA, which not only has a 
high tracking precision and a great tracking stability in the process of tracking diaphragm movement, but also has the advantage of 
no additional manual adjustment for parameters during operations 
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1. Introduction 

Radiation therapy is a common method for cancer treatment 
and is a local treatment where high-energy photons only hit the 
cells in the treatment area. However, the treatment is 
accompanied by side effects of radiation to the healthy tissue 
surrounding the tumor. Common side effects include Skin 
inflammation, feeling fatigue, depraved appetite or dysphagia; 
some severe side effects include spondylitis and myocarditis. 
During the treatment, the respiratory motion will cause organs 
to move [1, 2, 3], which results in excess displacement of tumor, 
especially for lung tumors. Mask R-CNN is one of the SOTA object 
detection frameworks which was proposed by Kaiming He et al. 
in 2017 [4]. This framework can perform object classification, 
localization and pixel-level instance segmentation. Therefore, 
the main purpose of this study is to build a new ultrasound 
image tracking technology based on Mask R-CNN, expecting to 
have a good stability while tracking the detected motion of 
diaphragm; moreover, we apply it to RMCS to evaluate the 
effeteness of compensation. 

2. Materials and Methods      

In order to explore the feasibility of applying M-UITA to RMCS, 
we took CT images for verification at Taipei Medical University 
Hospital. Experiments were performed to verifiy the tracking 
displacement accuracy of M-UITA and respiration motion 
compensation. The compensation rates tracked with UITA and 
M-UITA were compared to see the advantage of the proposed 
technology. 
   
2.1. Experimental apparatus 

The experimental apparatus used in this study include 
Respiratory Motion Simulation System (RMSS) [5], Respiratory 
Motion Compensation System (RMCS), ultrasound equipment, 

diaphragm phantom. RMSS and diaphragm phantom were used 
for the simulation of human respiratory motion. RMSS would 
carry the diaphragm phantom and move according to the 
received pre-recorded respiratory signals. This design could 
better simulate the actual movement when a human breathes. 
A rubber belt was placed on the wall for the simulation of the 
diaphragm, and ultrasonic wave would bounce off the belt to 
form an ultrasound image (Fig. 1). Since the rubber belt was 
difficult to be seen under CT, a metal wire was closely attached 
to the rubber belt for a clear contour. The CT images were 
analyzed with Tracker. We manually located feature point of the 
diaphragm phantom in every frame of the series CT images and 
acquired the phantom’s movement trajectories. Fig. 2 shows the 
overall experiment setup. 

 
 

Figure 1. (a) Side view of the diaphragm phantom. (b) Top view of the 
diaphragm phantom.    

 
Figure 2. The overall experiment setup. 

 
2.2. Dataset and model training      

The dataset of 1,800 human diaphragm images was obtained 
with ultrasonic equipment, and the size of each image is 
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800×600. Deformed shapes of the diaphragm under severe 
breathing were intentionally recorded in order to increase the 
variety of the dataset for model train. The 1800 images were 
divided into training set and validation set at the ratio of 80% 
and 20%. In this work, VIA (VGG Image Annotator) was used for 
data labeling. Because the number of samples in this study was 
not large, a pre-trained model based on the COCO dataset [6-7] 
was used. During training the model, learning rate was set to 
0.001, batch size was set to 5, and epoch was set to 100. Fig. 3 
shows the screenshots of working M-UITA. The red dots in the 
figures are the visualization of the mean coordinates calculated 
by M-UITA. 

 
Figure 3. Screenshots of working M-UITA. 

3. Results      

When tracking specific objects in noisy scenes such as 
ultrasound images, deep learning-based tracking technology can 
bring greater robustness. Fig. 4 shows the racking trajectories of 
each input signals. It can be seen from Fig. 4 (b) that after 70 
seconds in Pattern C, the tracking trajectory of UITA is extremely 
unstable, which may be because of the feature point of UITA was 
lost while tracking. The reason could be the contact surface 
between the ultrasonic probe and the upper diaphragm 
phantom existed a little gap during the compensation process, 
which makes the contour of the diaphragm disappear. However, 
tracking with M-UITA did not have this issue and showed a stable 
tracking process. In Pattern D, the compensation rate using M-
UITA is quite close to that of UITA. Due to the lower respiratory 
frequency, the uncertain factors such as speckles and contact 
surface gap in the ultrasound image are less, which may not 
highlight M-UITA’s advantages. The residual signal at the turning 
point has larger concaves (closer to zero), which means M-UITA 
can track the displacement of the diaphragm more accurately at 
the turning points.  

 
Figure 4. The tracking trajectories of: (a) Pattern C compensated with M-
UITA; (b) Pattern C compensated with UITA; (c) Pattern D compensated 
with M-UITA; (d) Pattern D compensated with UITA; (e) Pattern E 
compensated with M-UITA; (f) Pattern E compensated with UITA. 

4. Discussion      

Since UITA is a traditional computer vision based on rules, 
image processing parameters (such as binarize, erode) need to 
be manually set before tracking. If the conditions of the scene 
do not correspond to the setting, it will not be able to track 
effectively. However, it is difficult to assure that the quality of 
ultrasonic purity of ultrasound pictures and the shape of 
diaphragm are clean and completed when detecting different 
patients. During the treatment, the RMCS will continuously 
moving, which makes the angle of the ultrasonic probe and the 
situation of contact with body surface cannot be perfectly 
remained as the initial position. The above factors increase the 
uncertainty while tracking the diaphragm with UITA, and also 
make the tracking process more difficult. M-UITA does not have 
the above problems. M-UITA does not need to manually adjust 
the parameters to fit the condition, and the tolerance for 
uncertainty in the image is also much higher. UITA tracks a single 
feature point of the diaphragm while M-UITA tracks the mean 
pixels of the detected diaphragm’s area. As long as the outline 
of the diaphragm still exists, even if the shape is incomplete or 
distorted, M-UITA can still detect the diaphragm by virtue of the 
good generalization of the model. Tracking the mean pixel 
coordinates of the area is more representative of the overall 
displacement than tracking a single specific point. 

5. Conclusions      

In this work, the ultrasonic image tracking technology, M-
UITA, was developed based on Mask R-CNN and was applied to 
the respiratory motion compensation system, RMCS. A total of 
1800 ultrasonic images of real diaphragm were obtained by 
ultrasonic equipment as a data set for the model training. M-
UITA’s function is to detect and calculate the pixel average 
coordinates of the diaphragm segmented by Mask RCNN, and 
transmit the data to RMCS. In order to verify the feasibility of M-
UITA, we performed the compensation experiment. The 
compensation rate was calculated to evaluate the effeteness of 
the proposed method and compared the results of M-UITA and 
UITA. We found that the compensation rate of the proposed 
method is at most 6.22% higher than that of UITA. In general, M-
UITA not only has a high tracking precision and a great tracking 
stability in the process of tracking diaphragm movement, but 
also has the advantage of no additional manual adjustment for 
parameters during operation. 
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