euspen’s 23 International Conference &
Exhibition, Copenhagen, DK, June 2023

www.euspen.eu

e .
+®%euspen

Balance control of quadruped robot by Deep Q-Network

Shih-Chieh Chen, Jau-Liang Chen*

National Chung Hsing University, Department of Mechanical Engineering, Taichung, Taiwan

*jlchen@dragon.nchu.edu.tw

Abstract

One of the issues of making an additive robot is posture balance control in a dynamic environment. In traditional method, we would
build a kinematic and a dynamic model to estimate the ideal posture to counter the dynamic environment. Nowadays, the
development of Reinforcement Learning (RL) attracts the researchers and engineers. It can solve multi-dimensional problems and
give optimal solutions. There are already some successful applications of RL in robotics. In this topic, we attempt to use one of the
RL methods, Deep Q-Network, to acquire a proper control model to make a quadruped robot balance on a balance board. The main
idea to achieve robot balance is knowing the relationship of the robot posture and the ground. Therefore, we use a series of raw data
from Inertia Measurement Unit and the position of foot end-point as the input. The control model outputs the final position of the
foot end-point in order to adjust the posture. With proper design of the training parameters and train environment, we successfully

obtained a control model that balance the quadruped robot when the ground tilt in random direction.

Keywords: Quadruped robot, Deep Q-Network

1. Introduction

In classic robot control, dynamic and kinematic analysis is
necessary to get the control model. Even though those
techniques could help acquire a robust control model, the
process is mathematically complicated for a multi-DOF(degree
of freedom) robot. The Machine Learning (ML) technique can
categorize input data and generate a result, and the input data
can mix with multiple sources. These characteristics make
Machine Learning useful for solving a multi-dimensional
problem. One of the common, and well-known ML algorithm is
Deep Learning. The model learns the desired output with a
group of expected input and output pairs (supervised data)[1-2].
Supervised data pair could be a known question and correct
answer. But in robotics control, it is difficult to predict the
correct answer in complex (multiple input) situations, there
could be even no correct answer. Therefore, we prefer
unsupervised techniques in robot control. Reinforcement
Learning (RL) is @ more common application[3-6]. RL does not
require labeling the correct output. There is only desired output,
by providing a guideline for the training agent. The principle of
the training agent is maximizing the reward it can get by taking
action.

In this paper, we introduce the procedure of implementing
Deep Q-Network, one of the techniques of RL, to acquire a
control model in simulation. The objective of the model is to
keep the quadruped robot body remain horizontal. It requires
direct input of sensory data and minimal information on the
robot's state, to maintain a quadruped robot body and remain
horizontal during operation.

2. Deep Q-Network

Deep QNetwork (DQN), or Deep Reinforcement Learning, is an
algorithm derived from QLearning. The feature of DQN is it uses
an artificial neural network(NN) to present a control model
(policy). NN can extract the characteristic of enormous input

data, the so-called State (S). The output of NN represent the
expected reward (Q) that the training agent can get by taking
Action (A). The NN that represents the policy is called Policy
Network (PNN). Since it just like a table recording expected
reward of each State and Action pair. We can also use Q. (S, A)
to represent PNN.

According to Mnih et al.[7], presenting a nonlinear function
such as NN is unstable to represent policy. This may be because
the correlation between data sequences is high, and the small
change of update may significantly change the distribution of
the NN. They present two solutions:

1. Experience replay: There is a memory that stores the
“experience”. Experience record the new State S;,, after a
timestep t by taking a specific Action A, and the Reward R
that training agent received. Thus one experience can
represent as a tuple of (S;, A;, R, S;+1) in each time step
t. When in learning stage, the agent randomly samples a
number of transitions from memory to perform update

2. Generate the other neural network, called Target Network
(TNN). TNN is a copy of PNN, it is used for generating
expected best return of new State-Action pair
(maxQ;(S¢41,4)). TNN is synchronized with PNN every
numbers of steps and hold fixed between individual
updates. This solution lower the error of supposed
expected return and current State-Action value.

The workflow of DQN is shown in Figure 1. At first, after the
initialization of the training environment. The training
environment samples an initial current state(St). Then process
moves to the execute phase. In the execution phase, the agent
decides whether to choose an action from the PNN or randomly
samples action from the action space base on ¢ -reedy
mechanism[8]. The agent interacts with the environment by
executing the action A;. The time step move to the next one (t +
1), environment returns the new state S;,; and areward R. The
next step is gathering the experience data (S;, A;, R, S¢41)

Initiate training Environment
Jcreate PNMN, TNN

A

Environment samples initial
state, start training loop

Execution Learning
Phase =q=-===mossqmmssnees . Phase =~ -TTTTTTTomeeees)
: . '
i '
H & H ! '
' '
: } [b '
' ~Ch H H
' H ' - '
: ' H '
H Pun - H H Memory :
' H '
- '
: [Randomly 51IT|I;|E : Iv i
' ndomly sa '
: ! t | action space ' experience '
' \—1—, H ! H
' H \ —— H
: ————— A ' 1
' H Ry i1 St. A '
' i ' I
. | '
1 Interact with the | ! H 'l L 2 4
: Environment] * 5 TN get PNN gat '
' i I mazi}{$,.y,0} Qs A H
' '
' ' :
! S4e1. Rray i Lk l - l y
: P [3 sy |
' Form experience i ' o Fipacing H
A e Y At Ris1. Ste1) : : Ratum Retum :
: N | :
H . ! :
' ' - '
1 Repince Sywith Ste1 | [Store axpanenca] 1 '
! Process continue ba mamory s ' Calculate Loss H
'
| ! o | :
' Exporience ' r 1 .
Serq ’ pd Update '
! B A Rien, Siatl [: BN '
: P ; !
' ' A . No 1
! [: Updata M
! ! + . JNN?~ '
' ' ' . '
H ' H ves § '
H * H Copy PN '
" ’ i 1o TN o

o o

Figure 1. The detailed workflow of Deep Q-Network.
and send the experience to memory. The new state replaces the
old current state, and the cycle continues.

In the learning phase, several experience data are randomly
picked from the memory (a min-batch). The agent uses these
data to calculate the loss for maintaining the weight of PNN. The
loss function is defined below:

L(6) = E(s, 4, R Sir)~UD) [(Rt+1 +ymaxQn(Seq,a;0') —
2
Q(S Ay 9))] (1)

where L is the loss function, 8 represents the weighting
parameters in PNN, and 6’ are the parameters in TNN;
Q(S;, Ag;) is the state-action value acquired from the PNN;
maxQ,(Sy41,a;60") is the maximum new state-action value in
the TNN; y is the discount rate; The symbol E(s, 4, r,s,,)~U(D)
denotes a set of experience data pulled uniformly random from
a data pool D, where storing experience in each time step t.
Note that, it does not matter whether the learning phase should
be synchronized with the execution phase. Both can function
individually.

3. Training environment and DQN implementation

3.1. Training environment

Figure 2 shows the view of the simulated quadruped robot and

environment. The ground (Figure 3) has the capability of rotating

in the X, Yaxis, which is the distrublance source. The following

parameters are the setup of the training process and the training

environment:

. Simulator minimal time resolution: 4 ms; We design the
parameters considering the working frequency of the
IMU sensor

. Initial robot height: 35 cm. This indicate the initial
distance between the robot body and the ground. For the
foot endpoint position y of each leg.

o Robot execute action frequency: 5 Hz; This is the
operating rate of the robot execute

N e

Figure 2. Simulated quadruped robot
Y

g—'/ / >

EN X

Figure 3. Configuration of ground rotation

an action. It is also the same as the decision rate of the
learning agent.

. Ground max incline angle: 7 degrees; The ground tilt
angle is random in our design. This parameter defines the
maximum angle of the ground incline in any direction.

. Ground angular velocity: 3.5 degrees/second; The
parameter refers to the lean rate of ground on axis X and
Y.

. Ground change period: 10 second; This is the time that
must pass before ground lean to another direction and
angle.

. Fail definition: When the robot tilt angle is greater than 6
degrees, we define it as a fail operation. We will reset the
simulation while keeping the learning system alive.

3.2. Deep Q-Network parameters design
The strategy is to let the learning agent identify the relation of

robot’s posture and ground. The action is the tilt direction along

the robot body. Finally, the robot adjust the robot leg based on

the action, and make the body of the robot remain balance.

. State:
The state contains the information of robot posture and
lean angle. In our configuration, we put the vertical
distance of foot endpoint correspond to the robot body
(H), and a series of raw angular velocity (V;) and
acceleration (Acc;) data from simulated IMU sensor. We
use a series of data since we expected that it contains
characteristics to represent the robot posture (Acc;) and
dynamic motion (V;). Equation below is the state design:

St = {Hyp, Hrp, Ho, Heyo
Vx,t' Vx,t—lv Vx,t—Sv Vy,tv Vy,t—l e Vy,t—s
ACCy py) ACCyp—g v s ACCy 114, ACCyt_15

Accy, ACCyp_p v ACCy 14, ACCy 15} (2)
Where S; is the state at time t; H;p, Hgp, Hiy, Hry
represent the height of left front, right front, left hind and
right hind foot; V, ., V, . represent the angular velocity
along with robot axis X and Y at time t. Accy;, Accy
denote the acceleration along robot axis X and Y
respectively. Note that 1 time step is 4 ms.

. Action:
We define two actions that denote the height change
command on the endpoint of the robot legs, for X (roll)

direction and Y (pitch) direction. We set the motion in
both directions to be symmetric. For example, if X action
is up, the left side will push up while the right side will pull
down in the next step. The detailed action setup shows
below:

Ay € (=3, kn, . 3mm sk = =3+ ;n = 0~20}

61

Ay, €{-3,..ky,..3mm;k=-3 o= 0~20} (3)
Where n can also viewed as the resolution of action.

. Reward:
In this research, we only implement 3 reward:
i Instant incline angle (degree): The value is based
on the instant robot incline angle (degree)in new

state (¢):
R = 0.4 x e7157abs(9)
(4)
Figure 4 shows the distribution of this reward
function.

-2

Figure 4. Reward distribution of instant incline angle

iii. Toward horizontal: The purpose of this reward is
further encourage agent stay around horizontal. It
gives reward when the change of incline angle (A¢g)
is more horizontal and give punishment if ¢

become larger after action execution. The
distribution is shown in Figure 5.
] | 1 |
R
-2 1 B — 1 2 6

Figure 5. The reward distribution of different situation. Green line
represent reward, while red line is punishment.

iii. Fail: If ¢ is larger than 6 degree. Give -0.5 as
punishment.
. Other parameters:
There are 2 important parameters. One is learning rate,
which refer to the change rate of weight pararmeters in
PNN. The value we set is 1073; The other parameter is
discount rate y, the value is 0.1. The value is relatively low
since we expect the agent choose action depent on
current situation instead of unknown future.

4. Training result

The training process took about 200k decisions to become
stable. Then we save the model and deploy it. Figure 6 Shows
the deploy result. We can observe that when the ground lean to
a random direction. The control model can maintain the robot
body to horizontal. We also put a video link below the figure.

Figure 7 shows the data record of the deployment. We focus
on the ground incline angle on axis X, Y, and the distribution of
roll, pitch angle of the robot. The dot lines represent the
timestep when the ground tilt to another random direction. The
result shows that the learning agent not only learns to maintain
the robot body to horizon, it also learns to reduce movement or
even stop moving when the robot body’s inline angle is very
close to 0.

i ;8
Figure 6. Execution result of the trained control model. The video
record link: https://youtu.be/SSIKzoDHBgM

Degree

Ground Angle ¥

&

Degree
=

Ground Angle ¥

100

Degree
[

Roll of Rabat body

Degres

Pitch of Robet hody

Figure 7. Detail record of ground rotate angle (Top 2) and the roll and
pitch angle of the robot body. The dot lines mark the timestep when
ground change its incline direction

Even though the control model can maintain the robot body
to the horizon, we still observe (timestep 60~80 second) a high
peak when the ground rotates both axis X, and Y significantly at
once.

5. Conclusion

We successfully use one of the Reinforcement Learning
techniques, Deep Q-Network, to acquire a control model in
simulation. The control model can maintain the robot body
when the ground rotates in a random direction. The State design
allows the model to identify the relationship between the
robot's posture and the incline angle, and the direction of the
ground. It is also possible for a NN to extract characteristics of
the robot’s posture from the series of simulated raw sensor data.
The current parameter design cannot handle the condition when
ground rotate both axis X, and Y significantly at once.

Acknowledgement

This research was founded by Minister of Science and
Technology (MOST) of Taiwan, ROC, under contract number
MOST 109-2221-E005-078. We also sincerely thank the Taiwan
Computing Cloud (TWCC) for giving essential support for this
research.

References

[1] Crisci, C., Ghattas, B., & Perera, G. 2012. A review of supervised
machine learning algorithms and their applications to ecological
data. Ecological Modelling, 240, 113-122.

[2] Joulin, A., Maaten, L. V. D., Jabri, A., & Vasilache, N. 2016. Learning
visual features from large weakly supervised data. In European
Conference on Computer Vision, 67-84.

[3] Tan, J., Zhang, T., Coumans, E., Iscen, A, Bai, Y., Hafner, D., Bohez,
S., and Vanhoucke, V., 2018, Sim-to-real: Learning agile
locomotion for quadruped robots, Robotics: Science and Systems.
IEEE.

[4] Haarnoja, T., Ha, S., Zhou, A., Tan, J., Tucker, G., & Levine, S. 2018.
Learning to walk via deep reinforcement learning. arXiv preprint
arXiv:1812.11103.

[5] Ananthakrishnan, A., Kanakiva, V., Ved, D., & Sharma, G. 2018.
Automated Gait Generation for Simulated Bodies Using Deep
Reinforcement Learning. In 2018 Second International
Conference on Inventive Communication and Computational
Technologies (ICICCT). IEEE., 90-95.

[6] Hwangbo, J., Lee, J., Dosovitskiy, A., Bellicoso, D., Tsounis, V.,
Koltun, V., & Hutter, M. 2019. Learning agile and dynamic motor
skills for legged robots. Science Robotics, 4(26), eaau5872.

[7] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J.,
Bellemare, M. G., ... & Hassabis, D. 2015. Human-level control
through deep reinforcement learning. nature, 518(7540), 529-533.

[8] Tokic, M., & Palm, G. 2011. Value-difference based exploration:
adaptive control between epsilon-greedy and softmax. In Annual
conference on artificial intelligence. 335-346.

