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Abstract 
The demand for robotic machining systems is on the rise due to various advantages such as wide workspace, flexibility, repeatability, 
and cost-effectiveness.  In particular, the aerospace industry, which manufactures large-size components, has shown a high interest 
in robotic machining systems. However, the low stiffness of the robot manipulator restricts the application of robotic machining, 
leading to low machining accuracy. To solve the problem, various compliance error compensation algorithms were proposed that 
predict compliance errors using the stiffness model and compensate for the estimated errors. The accuracy of prediction of 
compliance error is critical for the effectiveness of the error compensation algorithms. For simplicity and acceptable accuracy, the 
virtual joint approach (VJA) is widely used to model robot manipulator stiffness. However, the VJA considers the stiffness of 
manipulator links as infinite and assumes all compliance error sources are concentrated in the joint, which results in modelling error. 
Thus, a data-driven learning method was proposed to identify the robot stiffness more precisely. In the study, a novel experimental 
setup was proposed to generate sufficient data for the data-driven learning method. A motor is connected to the robot end-effector 
using a wire and various force is applied to the robot manipulator by controlling the wire tension in multiple manipulator postures. 
The acquired data was then used to train a machine learning algorithm to develop the stiffness model. To verify the effectiveness of 
the developed stiffness model, a comparison with the previous stiffness model was performed. 
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1. Introduction 

The demand for robotic machining systems is on the rise due 
to various advantages such as wide workspace, flexibility, 
repeatability, and cost-effectiveness. However, robotic 
machining systems face limitations due to the low machining 
accuracy caused by the low stiffness of robot manipulators [1]. 
Thus, precise stiffness models are crucial for enhancing the 
performance of robotic machining.  

The VJA (Virtual Joint Approach) method is the most widely 
used approach for determining the rigidity of industrial robots 
[2,3]. This method involves adding virtual elastic joints between 
two adjacent links to create a multi-rigid model. The VJA model 
assumes that the links are rigid and that the joints are compliant 
and considered virtual springs, which combine all types of 
compliance sources into a single entity. However, due to this 
simplification, the accuracy of the VJA model is only about 80%. 
To improve the prediction accuracy of the stiffness model, data-
driven methods have been proposed [4]. 

The data-driven approach has the advantage of developing a 
more accurate stiffness model by training a machine-learning 
model with a vast amount of data. However, due to the 
significant time and cost required to generate data for training, 
there have been no cases of the data-driven approach being 
applied yet [5]. Thus, this study proposes a new experimental 
setup to generate adequate data for training the robot stiffness 
model. To verify the effectiveness of the developed stiffness 
model, a comparison with the previous stiffness model was 
performed. 

 

2. Data-driven stiffness identification method 

Stiffness identification involves comparing the load applied to 
the robot with the corresponding amount of deflection. A 
common experimental method suspends a dead weight from 
the robot end-effector and measures the deflection using a laser 
tracker. However, this method is time-consuming since all 
variable values must be measured in equilibrium states. The 
existing experimental method has limitations when applying it 
to the data-driven stiffness model. Therefore, in this study, a 
novel experimental setup was proposed to generate sufficient 
data for the data-driven learning method. The experimental 
setup consists of a servo motor, a wire, a Force/Torque sensor 
(FT sensor), a laser tracker, and a robot manipulator as shown in 
Figure 1.  

 
 
Figure 1. Data-driven stiffness identification experiment setup 
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The servo motor was utilized to pull the wire attached to the 
end-effector, thereby imposing a load on the robot manipulator. 
Concurrently, the FT sensor measured the external force 
imposed on the robot manipulator, while a laser tracker system 
measured the corresponding deflection of the end-effector. By 
adjusting the tension of the wire using the servo motor, various 
forces were applied to the robot end-effector in multiple 
postures. The experimental data obtained in one robot posture 
is presented in Figure 2. The proposed method can efficiently 
produce training data by collecting data in a non-equilibrium 
state. Experiment was performed in 10 different postures. The 
robot posture that used in experiment are indicated in Table 1. 
The machine learning algorithm used for robot stiffness 
identification in this study is a random forest model. Random 
forests are a combination of tree predictors such that each tree 
depends on the values of a random vector sampled 
independently and with the same distribution for all trees in the 
forest [6].  

The training dataset for the machine learning model 
comprised six joint angles, force-torque data, and deflection 
data. In the machine learning model, joint angle and force-
torque data were utilized as inputs, while deflection data was 
used as an output. The sampling time was 1kHz, and down 
sampling was performed at 400Hz to prevent overfitting. A 
moving average filter was used to remove noise from the FT 
sensor. To train and test the machine learning model, 80% of the 
data was used for training and 20% for testing. 

 

Figure 2. Force-deflection experiment result 

 
Table 1. Robot posture used for data acquisition 
 

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 

97.28 5.6 89.02 -3.2 -72.25 -162.33 

101.34 4.01 99.68 -3.21 -72.25 -162.33 

109.7 -11.51 99.68 -3.21 -72.25 -162.33 

107.89 6.76 69.13 4.71 -57.02 -168.64 

102.89 9.76 65.13 4.71 -57.02 -168.64 

95.4 88.07 -53.94 12.55 63.25 1.45 

71.57 46.17 43.5 7.14 -42.76 1.75 

95.71 -32.14 -75.32 2.04 62.77 1.75 

88.43 32.15 61.93 7.14 -42.77 1.75 

1.75 75.49 53.58 37 -27.78 -206.41 

3. Results 

To evaluate the performance of the machine learning model, 
the predicted deflection values obtained using the VJA and 
machine learning algorithms were compared with the actual 
deflection values. The comparison results are presented in 
Figure 3. When 800 N of force was applied to the robot end-

effector, the prediction accuracy of the VJA algorithm and the 
machine learning algorithm was 81.9% and 92.8%, respectively. 

 

 
 

Figure 3. Prediction of deflection using VJA method and machine 
learning  

4. Conclusion 

The accurate prediction of the deflection of a robot end-
effector is crucial in robotic machining. To predict the deflection 
of a robot, a data-driven approach using a machine learning 
model has been proposed. However, the previous experimental 
method for stiffness identification cannot provide sufficient data 
for training a machine learning model. To address this issue, this 
study proposed a novel experimental method. By adjusting the 
tension of the wire attached to the servo motor, various forces 
were applied to the robot end-effector in multiple postures. By 
comparing the deflections predicted by the existing VJA method 
with those predicted by the proposed machine learning 
algorithm, it was confirmed that the proposed method offers an 
improvement of approximately 10% in performance. 
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