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Abstract 
Surface roughness (Ra) and material removal rate (MRR) of electrical discharge machining (EDM) are significantly associated with 
electric discharge pulses. The tool wear rate and compensation, which are crucial for precise control, are affected by varied pulse 
energies, which affect different pulse energies. As a result, EDM pulse categorisation is critical for theoretical analysis and servo 
systems. For divers machining techniques, current EDM power systems often use a combination of RC, LC, and transistorised pulse 
generators. Therefore, it is difficult to annotate the transitional condition between open and short pulses with voltage thresholds. 
Furthermore, because the discharge state is sensitive to the inter-electrode gap circumstances, the classification technique in 
current EDM should be able to adjust to the changeable pulse time. The current work proposes a data-driven model that is pulse 
duration naturally suited and free of voltage threshold for pulse categorisation. Dynamic Time Warping (DWT) is a technique that 
estimates the similarity of distinct pulses, notwithstanding their duration and peak voltage, without predefined time and voltage 
criteria After establishing a similarity matrix for each pulse, an unsupervised learning model with no specified pulse categories is 
developed to autonomously cluster pulses. After establishing a similarity matrix for each pulse, an unsupervised learning model 
with no specified pulse categories is developed to autonomously cluster pulses. In addition, this effort would contribute to a 
greater comprehension of the EDM process and provide additional insight into EDM pulses. 
 
EDM, pulse classification, machine learning, unsupervised learning    

 

1. Introduction 

Electrical discharge machining (EDM)[1] is an important 
unconventional machining technology that can process 
difficult-to-cut materials such as titanium alloys, nickel-based 
alloys, and silicon carbide, and has been widely used in 
aerospace and mold manufacturing. The processing 
performance of EDM such as surface roughness (Ra) [2–4] and 
material removal rate (MRR) [2,5] is strongly associated with 
electric discharge pulses. Additionally, different pulses result in 
distinct pulse energies and tool effects. While the tool wear 
rate (TWR) and compensation are vital for the exact operation 
of the servo system, they are also essential. 

Pulse classification by thresholds of voltage [6] is a very 
popular method for pulse feature extraction. These thresholds, 
which are mostly concluded by experience knowledge, are 
laborious to set as the processing parameters changed. 
Machine learning is an effective approach to classification [7]. 
There are two kinds of machine learning algorithms: supervised 
learning[8] and unsupervised learning [9]. For EDM pulse 
classification, supervised learning means some pulses were 
labelled by expert knowledge previously, e.g. open, spark, 
short, and partially short, and train the algorithm to learn to 
tag the remaining pulses correctly; unsupervised learning is a 
technique that can assign the unclassified pulses into several 
clusters, the unsupervised learning algorithm discovers 
information on its own. 
  For various manufacturing techniques, the power supply 
of modern EDM often employs a combination of RC, LC, and 
transistorised pulse generators. It is difficult to characterise the 

transitional state between open and short pulses. In addition, 
because of the discharge condition of RC-based power supplies, 
the pulse duration is not constant, causing an adaptation of the 
classification technique to the variable time span. For various 
manufacturing techniques, the power supply of modern EDM 
often employs a combination of RC, LC, and transistorised pulse 
generators. It is difficult to characterise the transitional state 
between open and short pulses. In addition, because of the 

 

Fig.  1 Experimental setup and data acquisition system 
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discharge condition of RC-based power supplies, the pulse 
duration is not constant, causing an adaptation of the 
classification technique to the variable time span. In the 
present study, the similarity of different pulses was calculated 
by Dynamic time warping (DWT) [10], which is intensively used 
in pattern recognition[11,12]. DWT is a non-linear method that 
measures the similarity between two time series by warping 
them in the time domain, which allows it to handle time series 
that may be out of phase or have different temporal sampling 
rates. In contrast, other convolution methods either require 
time series to have the same length and temporal resolution, 
which may not be practical or feasible in some applications, or 
simply adjust the data by padding it with zeros, which can lead 
to data inconsistencies. 

In this study, the similarity of distinct pulses, regardless of 
their duration and peak voltage, is evaluated using the DWT 
without predefined time and voltage thresholds. The pulses 
were classified into several clusters using hierarchical 
clustering, with a matrix of similarity for each cluster. This 
effort would contribute to a greater comprehension of the 
EDM process and provide additional insight into EDM pulses.  

2. Experimental setup and pulse data acquisition 

Experiments of micro-EDM drilling and the pulse data 
recording are carried out on a SARIX EDM machine and NI data 
acquisitions system (DAQ), as shown in Fig.  1. This system 
allows for monitoring and recording the electric pulse signals 
during the EDM process. WC rods of 0.3 mm in diameter were 
used as tool electrode and STAVAX (stainless steel) plates were 
used as the workpiece.  

3. Results and discussion  

3.1 Pulse cycle definition 
Pulse cycle definition in electro-discharge machining 

(EDM) is important as it determines the timing and sequence of 
electrical pulses that remove material from a workpiece. The 
parameters of cycle definition such as pulse duration, peak 
current, and pulse frequency are crucial in controlling the 
material removal rate, surface finish and overall efficiency of 
EDM process. It is therefore essential to optimise the cycle 
definition for the desired outcome.  

In this work, the pulse cycle was characterised by the shift 
mean and Fast Fourier Transform (FFT). In particular, the FFT 
was used to remove the noise from the electric signal, and then 
the shift mean value was calculated continuously inside a 
moving time window. The beginning and end points of an 

electric discharge cycle were labelled when the shift mean 
value underwent a considerable change, as indicated in Fig. 2. 
In this case, a pulse cycle begins when the shift mean label 
transitions from 0 to 1, and ends when the shift mean label 
transitions from 1 or 0.5 to 0.  

Figure 3 depicts the defining findings for the pulse cycle. 
The FFT + shift mean method may effectively distinguish pulses 
from continuous time series data, regardless of their duration 

or peak value. Figure 3 depicts the defining findings for the 
pulse cycle. The FFT + shift mean method may effectively 
distinguish pulses from continuous time series data, regardless 
of their duration or peak value. In fact, this method employs a 
relative threshold value in the y direction, which is the time 
direction, as opposed to an absolute threshold value in the x 
direction, which is the voltage/current amplitude value. This 
allows for greater flexibility when the pulse duration is not 
constant, and the discharge peak value varies greatly. 
 
3.2 Dynamic time warping 

Dynamic Time Warping (DTW) is a technique for 
comparing and aligning two data sets (often time series) that 
are not precisely synchronised. It's a technique for determining 
the optimal matching and warping distance (similarity) 
between two sequences. For sequence 𝑄 = {𝑞1, 𝑞2, … , 𝑞𝑛} and 
𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑚}, 𝑑(𝑞𝑖 , 𝑐𝑐) is the Euclidean distance between 
the 𝑞𝑖 and 𝑐𝑗 , and allocate all the points in 𝑄 and 𝐶.to construct 

 

Fig.  3 Typical EDM pulses 
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the matrix 𝐴𝑚×𝑛  where the 𝑎𝑖𝑗 = 𝑑(𝑞𝑖 , 𝑐𝑗) ∈ 𝐴𝑚×𝑛  is the 

warping path. Hence, the 𝐷𝑇𝑊(𝑄, 𝐶) is aiming to find the 
overall minimal summing warping path: 

𝐷𝑇𝑊(𝑄, 𝐶) = min⁡{∑
(𝑎𝑖𝑗)𝑡
𝐾

⁡⁡}⁡

𝐾

𝑡=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1) 

 
where 𝐾 = max⁡(𝑚, 𝑛) is the longer data length of 𝑄 and 𝐶.  

A typical DTW alignment and the corresponding warping 
path is shown in Fig. 5. The pulse NO.22, pulse NO. 78 and 
pulse NO.338 can make a good alignment despite their 
different amplitudes and durations. Table 2 and Table 2 
illustrate the pair wise DTW distances of voltage and current 

for pulses No. 22, No. 78, and No. 338 as an illustration. In this 
case, the 𝐷𝑇𝑊(𝑉𝑜𝑙𝑡𝑎𝑔𝑒22, 𝑉𝑜𝑙𝑡𝑎𝑔𝑒338) = 1220.367 <
𝐷𝑇𝑊(𝑉𝑜𝑙𝑡𝑎𝑔𝑒22, 𝑉𝑜𝑙𝑡𝑎𝑔𝑒78 = 515.690 , denotes that the 
Pulse NO. 22 is more similar to Pulse NO. 78 than Pulse 338.    

As a result, by constructing a DTW distance matrix for all 
observable pulses with pair wise DTW distance, the relative 
similarity between each pair of pulses can be determined. 

 
Table 1 Pair wise DTW distance of voltage for pulses [22, 78, 338]  

 Pulse NO. 22 Pulse NO. 78 Pulse NO. 338 

Pulse NO. 22 0 515.690 1220.367 
Pulse NO. 78 515.690 0 537.968 
Pulse NO. 338 1220.367 537.968 0 

 
Table 2 Pair wise DTW distance of current for pulses [22, 78, 338]  

  
 Pulse NO. 22 Pulse NO. 78 Pulse NO. 338 

Pulse NO. 22 0 19.779 24.245 
Pulse NO. 78 19.779 0 11.519 
Pulse NO. 338 24.245 11.519 0 

 
3.3 Hierarchical clustering 
Hierarchical clustering, also known as hierarchical cluster 
analysis, is a technique that clusters related objects. The 
endpoint consists of a collection of clusters, where each cluster 
is distinct from the others and the items within each cluster are 
generally comparable. In this study, the DWT distance between 
pulses NO.1 and NO. 6 (voltage and current, respectively) is 
[6203.44, 356.87], however, the DWT distance between NO.1 
and NO. 22 is [482536.59, 332.60], which is much more than 
that between NO.1 and NO. 6. In addition, the DWT distance 
between NO 22 and NO 312 is [1,099,93, 13.75]. Consequently, 
the NO. 22 pulse is more similar to the NO. 312 pulse than the 
NO. 1 pulse, and the NO. 338 pulse is more similar to the NO. 
22 pulse than the NO. 22 pulse.  

Multiple clusters can be constructed when calculating the 
pair wise similarity of all items. By modifying the cluster 
method's parameters, the number of clusters can be changed. 
The pair wise DTW distance matrix can be utilised to develop a 

 

 

 
Fig.  5 Dynamic time warping for EDM pulses: Pulse NO. 22 
vs Pulse NO. 338 and Pulse NO. 78 vs Pulse NO. 338 
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linking criterion that determines how similarity between two 
clusters is calculated. In hierarchical clustering, several linkage 
criteria, including single linkage, complete linkage, average 
linkage, and Ward's linkage, are widely applied. Single linkage 
clustering employs the minimal similarity between any two 
data points from the two clusters being merged as the measure 
of cluster similarity. This technique produces clusters with an 
extended form. Complete linkage clustering employs the 
highest similarity between any two data points from the two 
clusters being merged as the measure of cluster similarity. In 
addition, this technique typically yields clusters with compact 
forms. As the measure of similarity between clusters, average 
linkage clustering employs the average similarity between all 
pairs of data points from the two clusters being merged. As a 
measure of similarity, Ward's linkage clustering use the 
variance increase induced by combining two clusters. 

As a result, using the pair wise similarity matrix and 
linkage criterion, the algorithm will proceed to iteratively 
merge or split the clusters until a stopping criterion is met. 
Once the clustering is done, the dendrogram is a tree-like 
diagram that shows the hierarchical relationship between the 
clusters and pulses as shown in Fig. 4.  

Moreover, in the context of hierarchical clustering, active 
learning can be used to iteratively refine the clustering results 
by allowing the expert to provide feedback on the clusters. The 
expert can provide labels for the clusters, such as normal or 
abnormal, and the model can use this feedback to adjust the 
similarity matrix and linkage criterion for the next iteration of 
clustering. This process can be repeated until the expert is 
satisfied with the clustering results. By incorporating expert 
knowledge via active learning, the model's accuracy in 
identifying normal and abnormal discharge pulses can be 
improved, and it can be a more valuable tool for the expert in 
gaining a deeper understanding of EDM. 

4. Conclusion 

In conclusion, this study provides a data-driven model that 
is naturally suitable for pulse duration and voltage threshold-
free for pulse categorisation. Dynamic Time Warping (DWT) is a 
technique for estimating the similarity between distinct pulses, 
regardless of their duration and peak voltage, and without 
predefined time and voltage criteria. After constructing a 
similarity matrix for each pulse, an unsupervised learning 
model is constructed to cluster pulses autonomously. This 
framework is able to cluster pulses based on their similarity 
requiring no predefined pulse classifications. 

Furthermore, the use of active learning with expert 
knowledge allows the model to be refined and improve its 
accuracy in identifying normal and abnormal pulses. This can 
be a useful tool for experts to analyse EDM data and gain a 
deeper understanding of the EDM process. Additionally, this 
effort can provide additional insights into EDM pulses and 
contribute to a greater comprehension of the EDM process. 
Overall, the proposed data-driven model can be a valuable tool 
for the analysis of EDM pulses and can assist in the 
optimization of the EDM process. 

In the meantime, DTW can serve as an advanced tool for 
process monitoring and control in various manufacturing 
applications. For instance, in the production of small and large 
cups, the processing time for each cup would differ but they 
would have similar manufacturing steps. DTW could be 
employed to analyze the time-series data generated by the 
manufacturing process for each cup and compare the 
differences between the processing times. 

By utilizing DTW in this way, manufacturers can gain 
insights into the production process for each cup and identify 

any anomalies or deviations from the standard process. This 
information could then be used to diagnose and correct any 
issues in the manufacturing process, regardless of the varying 
production times. Moreover, DTW can be used for more 
complex manufacturing processes where multiple steps are 
involved. DTW can compare time-series data from each step 
and detect any deviations from the expected process. This 
enables manufacturers to monitor and control the production 
process in real-time, preventing any issues or defects from 
arising.  
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