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Abstract 
In-process monitoring in milling, specifically tool condition monitoring (TCM), is an important technology for improving productivity 
and workpiece quality. However, industrial implementation of in-process TCMs remains a difficult task, since progressing tool wear 
is indicated by small changes of various physical parameters. Therefore, a sensitive monitoring system is needed to provide a reliable 
base of information while having minimal impact on the machine tool system and processes.  Recent advancements in deep learning 
(DL) techniques are frequently applied on monitoring data for tool wear prediction as they can process and analyse raw data without 
prior feature engineering. This paper presents a suitable monitoring approach based on a recently developed sensory tool holder, 
which measures cutting forces and vibrations in direct proximity to the process zone. The system is equipped with wireless data 
transmission and a novel energy harvesting technology for energy supply. Two milling experiments with focus on increasing tool wear 
were conducted and the collected data processed. A DL based model, comprising three convolutional neural network (CNN) layers, 
one long short-term memory (LSTM) layer, and a multi-layer perceptron (MLP), was trained on the raw sensor signals to make 
predictions on the tool wear state. The model was evaluated using previously unseen test data and achieved a high prediction 
accuracy of at least 97,3% for all sensor signals, with the highest accuracy of 99,9% achieved when using bending moment signals. 
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1. Introduction   

Milling is a common manufacturing process, especially for 
machining high-quality and precise parts. With the increasing 
automation in the machining industry, in-process monitoring in 
milling becomes a key technology for improving productivity 
while maintaining high quality and accuracy of the parts. One 
area of focus for in-process monitoring in metal cutting is the 
monitoring of tool health, also known as TCM. Reliable detection 
of tool wear allows for efficient usage of tools and resources and 
reduces the number of tool breakages and scraped parts. 
However, implementing in-process tool condition monitoring in 
an industrial setting is challenging because small changes in 
several parameters indicate advancing tool wear. 

Recently, Teti et al. [1] presented a comprehensive overview 
of scientific approaches for process monitoring in machining. 
Moreover, there are specific review articles on tool condition 
monitoring in milling [2, 3]. For example, tool wear monitoring 
is enabled through online analysis of motor current signals [4]. 
Such systems are already available on the market for industrial 
application [5, 6]. However, sensitive signals acquired closer to 
the cutting process, e.g. vibrations, forces, or acoustic emissions, 
are more suitable for reliable monitoring. Examples are given by 
Kuntoğlu et al. [7]. DL techniques are frequently applied for tool 
wear monitoring because they can directly process and analyse 
raw data without the need for prior feature engineering. CNNs 
and LSTM networks are popular DL models for analysis of time 
series data [8].  

In scientific approaches, accelerometers or dynamometers are 
typically temporarily installed near the workpiece or spindle to 
capture data from the process. However, the effort for 
installation is comparably high and such setups are not robust 
enough for industrial applications. Therefore, a sensitive 
monitoring system is needed to provide a reliable base of 
information while introducing only minimal implication towards 
the machine tool system and processes. Sensor integration in 

the tool holder is a promising strategy for this problem. A review 
on the state-of-the-art of such systems is given in [9]. Recently, 
a novel multi-sensory tool holder was developed by the authors 
using wireless communication and wireless energy supply via 
electromagnetic induction, which enables the system to operate 
permanently without a separate power supply. The integrated 
sensors measure vibrations and forces in several directions [10].  

This recently presented smart tool holder is utilized in this 
paper as basis for a new TCM method. The sensor signals of the 
tool holder are transmitted to an analysis unit and pre-
processed there. A DL model consisting of several stacked CNNs, 
an LSTM layer, and an MLP is employed here for the first time to 
predict the wear of milling tools. It is separately trained on each 
raw sensor signal. Thereby, the capability of those signals to 
provide tool wear related information is investigated. 

The paper is organized as follows. The methodology, i.e. the 
concept of the sensory tool holder and the DL model, is 
presented in section 2. The experimental setup and data 
preparation is described in section 3 and section 4. The results 
of the tool wear prediction are given in section 5, followed by 
conclusions in section 6.  

2. Methodology      

2.1. Sensory tool holder 
Small changes of cutting process behaviour, for example due 

to tool wear, are frequently detected by external sensors. 
Appropriate measurement quantities with extensive 
information are cutting forces and vibrations [7]. For this reason, 
a sensory tool holder was developed and manufactured to 
collect sensitive data of these quantities in direct proximity to 
the process zone. The design is depicted in figure 1. The cutting 
force measurement is realised by strain gauges which are 
applied to the tool holder’s surface. The considered mechanism 
is the change of the sensor resistance ∆𝑅 as a result of strain 𝜀 
caused by force excitation. The corresponding equation for a 
single strain gauge 𝑖 (𝑖 = 1, 2, 3, … ) is 
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∆𝑅𝑖 = 𝑘𝜀𝑖𝑅0, (1) 

where 𝑅0 is the sensor’s nominal resistance and 𝑘 is the 
sensitivity factor. In order to compensate several disturbing 
influences on the strain gauge resistance and to acquire higher 
output signals, four strain gauges are commonly connected to 
Wheatstone full bridge circuits. The simplified bridge equation is 
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where 𝑈𝐵 is the bridge supply voltage and 𝑈𝑀 is the electrical 
output voltage. Depending on the orientation of the strain 
gauges on the tool holder surface, the sensors’ relative change 
of resistance either add up or eliminate each other within the 
bridge circuit. Thereby, measurement of different directional 
components of the cutting force is enabled. In terms of the 
proposed smart tool holder, a radial and axial measurement 
direction are realised. Due to typically varying tool length, the 
bending moment is utilized as monitoring parameter instead of 
the radial force. While equation (1) and (2) together define the 
linear conversion between strain and output signal of the sensor 
bridges, Hooke’s law describes a linear relation between force 
and strain in case of linear-elastic deformation. Therefore, also 
a linear relation between the sensor signals and forces applies, 
which is determined by finite element analysis (FEA) and 
validated through experiments with a dynamometer as 
reference [10].  

 
Figure 1. Sensory tool holder design with standardized HSK-A63 spindle 

interface (DIN 69893) and collet chuck, type ER40 (DIN ISO 15488) 

Furthermore, the tool holder is equipped with the 
piezoelectric accelerometer 832M1 from TE Connectivity, which 
measures the structural vibrations and is directly mounted on 
the circuit board. The sensor provides a radial, axial, and 
tangential sensing direction. In contrast to commonly used 
MEMS (“micro-electro-mechanical systems”) sensors, this 
sensor type does not measure the high static accelerations [11] 
in radial direction caused by the tool rotation and is therefore 
well suited for an off-centre application. 

The mentioned five analogue sensor signals are filtered, 
amplified and converted into digital signals with a specified 
sampling rate. An overview of sensors and data acquisition 
properties is presented in table 1.  

Table 1. Properties of tool holder sensors 

Parameter Range Resolution Sampling 
rate 

Low-pass 
filtration 
frequency 

Bending 
moment 

±400 Nm 0,2 Nm 10 kHz 2,4 kHz 

Axial force ±15 kN 7,5 N 10 kHz 2,4 kHz 

Acceleration 
(triaxial) 

±100 g 0,08 g 10 kHz 5 kHz 

Since the tool holder is rotating, the implemented energy 
supply technology must be wireless and preferably permanently 
available. For this reason, the recently developed tool holder 
follows a novel approach based on energy harvesting, where the 
kinetic energy of the spindle rotation is used to supply the smart 
device with power. This results in energy self-sufficiency of the 
system. For this solution, four coils are mounted on the rotating 
tool holder. A compact stator with four magnets is mounted on 
the spindle face in proximity to the coils. The magnets are 
alternately aligned regarding their polarity. During spindle 
rotation, the coils with winding number 𝑁 move through the 
static magnetic field. An electrical voltage is induced according 
to following equation. 

𝑈𝑖𝑛𝑑 = −𝑁 ∗ 𝑑𝜙/𝑑𝑡  (3) 

The electrical voltage 𝑈𝑖𝑛𝑑  is dependent on the change in 
magnetic flux density 𝜙 over time 𝑡, which in this case is defined 
by the spindle speed, distance between coils and magnets as 
well as the remanence of the magnets. The energy supply 
configuration of the current tool holder prototype operates the 
system in a typical spindle speed range of 1800 min-1 to 
20000 min-1. If necessary, the range can be lowered or increased 
through adjustment of the mentioned parameters. 

The data communication of the system must be wireless as 
well. Therefore, it is realized through radio transmission using 
protocol Bluetooth Low Energy (BLE). The receiver antenna is 
mounted at an arbitrary location inside the working space of the 
machine tool. All electronic components of the sensory tool 
holder are applied in pockets and covered with epoxy resin filling 
compound. Thereby, the design implies no interfering contour 
to the machine and process.  

2.2. Tool wear prediction model 
Tool wear prediction based on sensor signals is frequently 

realised by machine learning models [12]. Traditional methods 
are, for example, Support Vector Machines (SVM), Artificial 
Neural Networks (ANN), Random Forests (RF) or K-Nearest 
Neighbours (KNN). These techniques require prior manual 
extraction of significant signal features to generate a better 
representation of raw signals regarding the targeted 
classification or regression. Another sub field of machine 
learning, that has recently shown great popularity for many 
fields and also does not require this pre-processing step, is deep 
learning. This method describes neural networks with multiple 
hidden layers and thus a more complex model structure, that 
needs to be trained on a larger volume of data, but then also 
promises higher prediction accuracy [12]. The prediction model 
of this work follows the deep learning approach. It is 
implemented in Python using the libraries TensorFlow and 
Keras. The aim of the model is the classification of different tool 
wear states for defined milling processes based on raw input 
signals. The architecture of the proposed deep learning model is 
shown in figure 2. 

 
Figure 2. Tool wear prediction model architecture with number of filters 

(respectively units, neurons) per layer 

Each 1D-CNN consists of a convolution layer, followed up by a 
non-linear rectified linear unit (ReLU) activation and a pooling 
layer. At each time step, the convolution layer applies a number 



  

of filters to the raw input signal. Each filter 𝑓 represents a 
weighted convolutional window 𝑊𝑓  with pre-defined size and a 

bias 𝑏𝑓. These filters move across every spatial position of the 

input signals 𝑋𝐶𝑁𝑁 and thereby generate an array of 
convolutions as output. A single convolutional output 𝑦𝑓,𝐶𝑁𝑁  at 

one spatial position can be expressed as  

𝑦𝑓,𝐶𝑁𝑁 = (𝑊𝑓 ∗ 𝑋𝐶𝑁𝑁) + 𝑏𝑓, (4) 

where ∗ denotes the convolutional operation. After processing 
these arrays with the ReLU activation function, the pooling layer 
reduces the number of outputs to the most significant ones and 
passes them to the next unit. Thereby, the three stacked CNNs 
convert raw input sequences to temporally shorter 
representations with multiple extracted features.   

The subsequent LSTM layer consists of multiple units and 
processes the CNN’s output, considering its temporal 
dependencies. The algorithm of a single LSTM unit is shown in 
figure 2. The input signal 𝑋𝐿𝑆𝑇𝑀,𝑡 at a time step 𝑡 is processed in 

combination with the unit output 𝑦𝐿𝑆𝑇𝑀,𝑡−1 from the previous 

time step and the unit memory 𝐶𝑡−1 from the previous time 
step. In particular, weighted arrays and biases as well as tanh 
and sigmoid (σ) activation functions are applied for generating 
the unit memory 𝐶𝑡 and unit output 𝑦𝐿𝑆𝑇𝑀,𝑡 for the current time 

step.  
Finally, an MLP consisting of multiple fully connected layers 

(dense layers) of neurons, classifies the LSTM output regarding 
tool wear state. At each time step, every neuron of a dense layer 
receives an input signal 𝑋𝑑𝑒𝑛𝑠𝑒 . Each neuron 𝑛 is characterized 
by an array of weights 𝑊𝑛 and a bias 𝑏𝑛. The output 𝑦𝑛,𝑑𝑒𝑛𝑠𝑒 of 

one neuron of the dense layer is  

𝑦𝑛,𝑑𝑒𝑛𝑠𝑒 = 𝑊𝑛
𝑇𝑋𝑑𝑒𝑛𝑠𝑒 + 𝑏𝑛, (5) 

where 𝑇 denotes the vector transposition. The length of 𝑊𝑛 
equals the input signal length. The number of neurons of the last 
fully connected layer equals the number of potential tool wear 
classes. This output is passed to a softmax activation function in 
order to normalize it and thereby create a probabilistic 
distribution regarding the predicted classification.  

The presented deep learning model will be trained on a data 
set of sensor signals with manually pre-defined classification. 
Achieving the highest possible compliance between classes 
predicted by the model and actual classes is the objective of this 
process. During training, the categorical cross-entropy loss is 
calculated as metric of the current model prediction quality and 
the 1.581.122 model parameters are adjusted through back 
propagation with a learning rate of 0,001. The Adam optimizer 
algorithm is used in this work to automatically adjust the 
parameters with the aim of minimizing the loss. The training 
data is provided in form of signal sequences, where 100 
sequences form a batch. A total of up to 100 training epochs is 
performed. At the end of the training process, the model 
performance will be evaluated on further sensor data. 
Therefore, the measure of accuracy is utilized in addition to loss. 
Accuracy is the percentage of predicted classes that match with 
actual classes for each input sequence.  

3. Experimental setup and observations 

Millings tests with progressing tool wear were performed on a 
vertical turn-milling centre VMC300MT from EMAG. The 
presented sensory tool holder was used in combination with a 
coated carbide end mill with a diameter of 12 mm, 4 cutting 
edges and a total length of 83 mm. A workpiece made of high-
alloy steel X40CrMoV5-1 is milled in form of consecutive straight 
cuts. The described setup as well as the kinematics of the milling 
operations are shown in figure 3. The straight cuts were 
conducted alternately as roughing and finishing process. 

Corresponding cutting parameters are selected from the values 
recommended by the end mill supplier and listed in table 2. 

Table 2. Cutting parameters of the experiment 

  

Figure 3. Experimental setup and process kinematic 

In this way, the workpiece material is removed layer by layer. 
After each layer the flank wear VB of the end mill is measured 
with the video microscope PG 2000 from Gühring. During the 
whole experiment, the sensory tool holder monitored the 
process and transmitted sensor data to a PC where it is stored in 
a database. A total amount of 6.93 GB of data was recorded. 
Figure 4 shows the tool wear progress and exemplary signal 
sequences for the bending moment 𝑀𝑏 over time 𝑡.  

 
Figure 4. Progress of flank wear per layer, microscopic recordings of a 
cutting edge and exemplary bending moment signals for one tool 
revolution with initial wear and moderate wear 

With progressing tool wear, it was determined that not only 
the amplitudes of all sensor signals increased, but also the 
intrinsic signal shape changed characteristically. Furthermore, 
signal components with higher frequency than the spindle 
rotation or tooth passing frequency occurred at different stages 
of the tool revolution. The amplitude of these high frequency 
components also increased with progressing tool wear. 

In addition to microscopical tool wear measurements, the 
workpiece surface was visually checked during the cuts. It was 
observed that starting from the 7th layer, clear wear marks were 
perceptible on the machined surfaces. For this reason, the data 
up to this layer was classified as “initial wear” and the data of 
the subsequent layers as "moderate wear". Moreover, it was 
observed that from the 17th layer onwards, melted material 
occurred at the edges of the process zone during roughing cuts. 
In conclusion, there was assumed to be "heavy wear". The 
associated measurement data is classified accordingly.  

Process 
type 

Cutting 
speed vc  
/ mˑmin-1 

Feed per 
tooth fz 
/mm 

Width of 
cut ae 

/mm 

Depth of 
cut ap 
/mm 

Roughing 100 0,045 3 6 

Finishing 120 0,06 1 6 



  

4. Data preparation 

One prediction model per process type is created and trained. 
Therefore, the experimental data were cleaned in order to 
improve the training quality. This included removing the signals 
for free rotation as well as workpiece entry and exit. 
Additionally, the middle cuts per layer were removed due to 
disturbing rapid turning movement of the workpiece table. The 
remaining data were divided into short signal sequences of 
48 ms each. The set of signal sequences was then further 
subdivided into a roughing data set and a finishing data set. The 
signals of the roughing data are classified as “initial wear”, 
“moderate wear”, and “heavy wear” of the cutting edges. The 
signals of the finishing data are classified as “initial wear” and 
“critical wear” of the cutting edges, where “critical wear” 
involved “moderate wear” as well as “heavy wear”. To enable a 
balanced training of the prediction models, random sequences 
were removed until the data sets contained an approximately 
equal number of sequences per class. The data set for finishing 
thus comprised a total of 6111 sequences and the data set for 
roughing a total of 8272 sequences.  

These data sets of time series sequences were then split into 
training, validation, and test data. The training data corresponds 
to 60 % of the total data and is used for training of the prediction 
model from section 2.2. The validation data contains 20 % of the 
total data and is used to trace the training progress and thus 
provide a suitable final criterion for optimal training duration. 
The test data represents 20 % of the total data and is finally used 
to evaluate the trained model by making predictions on the tool 
wear state for input sequences it has not seen before. These 
predictions are compared to the actual classification. The 
accuracy and loss values serve as indicators for model quality.  

5. Results and discussion      

All sensor signals that are available at the sensory tool holder 
have been separately tested as input to the proposed prediction 
models. The results are shown in table 3. High prediction quality 
is characterized through high accuracy values and low loss 
values. The loss can be interpreted as certainty of predictions. 
The model trained on the finishing process shows overall slightly 
better results than the model for the roughing process. The 
reason might be the additional class of “heavy wear” in the 
roughing data set, that is assumed to be more difficult to be 
distinguished from signals of “moderate wear”.  

Table 3. Prediction quality of models on test sets of sensor signals 

Sensor signal Roughing Finishing 

loss accuracy loss accuracy 

Tangential acceleration  0,106 98,2 % 0,056 99,1 % 

Axial acceleration 0,024 99,4 % 0,030 99,5 % 

Radial acceleration 0,143 97,9 % 0,032 99,3 % 

Bending moment 0,005 99,9 % 0,002 99,9 % 

Axial force 0,172 97,3 % 0,075 99,0 % 

Nevertheless, all sensor signals allow a reliable and highly 
accurate prediction of the tool wear state. The best results were 
accomplished for bending moment signals as input, where the 
prediction accuracy was nearly perfect. Only 2 out 1656 test 
sequences of the roughing process and 1 out of 1222 test 
sequences of the finishing process was classified falsely. For this 
approach, the testing of multivariate input data, which means 
training the model on a combination of multiple sensor signals, 
is not necessary due to the highly sufficient prediction accuracy 
of univariate input in form of bending moment signals.  

Based on these results, a high quality of the raw sensor signals 
can be assumed, which enables the model to learn significant 

unique features that represent pertinent information about the 
tool wear state. Furthermore, it can be deduced from the overall 
high prediction accuracy that the model architecture and hyper-
parameters were appropriately selected for this application.  

6. Summary, conclusion, and outlook 

This paper presents a tool wear prediction method based on a 
multi-sensory tool holder and a deep learning model. The 
conducted experiments include two different milling processes 
for a specific combination of machine tool, tool and workpiece. 
The smart tool holder system measured the process forces in 
two directions as well as vibrations in three directions. The 
sensor data was transmitted wirelessly to a PC, where it was 
analysed. For each process type and each sensor signal, a deep 
learning model, consisting of three CNN layers, one LSTM layer, 
and an MLP, was trained to predict the tool wear state. The final 
models were evaluated using previously unknown test data. A 
high prediction accuracy of minimum 97,3 % was achieved for all 
sensor signals. A maximum of 99,9 % accuracy was accomplished 
when using bending moment signals.  

In conclusion, the presented methodology can be estimated as 
suitable for prediction of tool wear in pre-trained milling 
processes. Especially, the use of a sensory or intelligent tool 
holder to measure forces and vibrations in close proximity to the 
process can be recommended to generate a sensitive database 
for the presented deep learning model. In particular, the radially 
oriented cutting force provides the most expedient information.  

In order to continue this work in the future, further 
experiments for varying combinations of tools, cutting 
conditions, kinematics, workpieces, and machine tool will be 
conducted to verify the results. The possibilities of transfer 
learning to extend the already trained models to new processes 
will also be investigated.  
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