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Abstract 
 
A folded sheet flexure provides a translational constraint along the fold line. In this paper, we designed a floating platform using four 
folded sheet flexures to achieve two rotational DOFs. Constraint line approach is used to design the flexure motion stage. The mobility 
of the platform is analysed using screw algebra. A wrench is defined along the constraint line between the floating platform and the 
base. Various configurations using four folded sheet flexures are considered, and subsequently constrained space matrix is obtained. 
Mobility of the platform is thus calculated using the reciprocity condition of the screws. A candidate design is obtained for two 
rotational DOFs. A prototype is fabricated using the rapid prototyping technique. Constraints and DOFs are verified using different 
methods and compared. Range of motion is compared along different directions. The developed methodology will be further used 
to design a 2-DOFs floating platform for various tracking applications. Screw algebra can be used for the mobility analysis of any 
general configuration using different numbers of folded sheet flexures and an optimised solution may be obtained for a given 
application. 
 
2-DOF floating platform, folded sheet flexure, screw algebra, mobility analysis      

 

1. Introduction  

To locate a point in a spherical coordinate system, three 
quantities are needed: the radial distance, the azimuthal angle 
of the point's orthogonal projection, and the polar angles from 
a fixed zenith direction [1]. The systems with two degrees of 
freedom can effectively follow a point in space [2-5].  

Rolling and sliding contacts are used to achieve mobility in 
rigid body mechanisms, while the elastic deformation of thin 
segments is used for motion in the complaint mechanisms [4-6]. 
Conventionally, a universal joint is used to achieve two degrees 
of freedom (DOF) in mechanical systems. 

In this paper, a floating platform using four folded sheet 
flexures is designed to achieve two rotational degrees of 
freedom about its orthogonal axes. Mobility analysis is 
performed using the screw algebra for various configurations of 
folded sheet flexure (FSF) in Sec. 2. Finite Element Analysis (FEA) 
software (ANSYS) is used for modal analysis to verify the results 
and discussed in Sec. 3, and the conclusion and future work are 
written in Sec. 4 and Sec. 5 respectively.  

2. Freedom of a rigid body      

A rigid body in space has six degrees of freedom. Hence it can 
rotate and translate about its three orthogonal axes. Physical 
contact between the rigid body applies the constraint. Thus, it 
reduces the DOF. The direction of the given constraint is referred 
to as the constraint line. 

In screw theory, a constraint is expressed by a wrench, while a 

twist expresses a DOF,  𝑻̂ = (𝛀|𝐕) and 𝑾̂ = (𝐅|𝐌) respectively 
[8]. Hence a freedom space of a rigid body in a space having six 

DOF can be represented by 𝚷𝐓 = [𝑻𝟏̂, 𝐓𝟐̂, 𝐓𝟑̂, 𝑻𝟒̂, 𝐓𝟓̂, 𝐓𝟔̂]𝑻.  
 
 

 
 

2.1. Mobility analysis of a folded sheet flexure  
 

A folded sheet flexure constrains only one translation along its 
fold axis, which is similar to a wire flexure [2-3]. An FSF is shown 
in Fig. 1.  

 
Figure 1. A folded sheet flexure (FSF) with DOFs and one constraint along 
the fold line which is shown with a dashed line 

 
In Fig. 1, one end of the FSF is fixed, while the other end is set 

to be a free end. The origin of an orthogonal coordinate system 
′𝑂′ is defined at the centre of the FSF and 𝑥 − axis is collinear 
with the fold axis of the FSF. Line segment 𝐶1 represents the 
constraint direction [6]. 

Wrench along 𝐶1 for the FSF is written as 

𝑊̂1 =  (1 0 0 | 0 0 0)    (1) 
The general motion of a rigid body is represented by a general 

twist 𝑇̂ as 

𝑇̂ = (𝛺𝑥 𝛺𝑦 𝛺𝑧| 𝑉𝑥 𝑉𝑦 𝑉𝑧)    (2) 

When a rigid body is constrained, the instantaneous motion is 
possible in a tangent plane normal to the constraint. Hence, the 
reciprocity condition can be used to write the screws [8-9] as 

𝑻̂ ∘ 𝑾̂ = 𝑭 ∙ 𝑽 + 𝑴 ∙ 𝛀 = 𝟎    (3) 

http://www.euspen.eu/
mailto:jpkhatait@mech.iitd.ac.in


  

On Applying the reciprocity condition, we get 𝑉𝑥 = 0, and 
therefore the general twist for the given case is: 

𝑇̂ = (𝛺𝑥 𝛺𝑦 𝛺𝑧| 0 𝑉𝑦 𝑉𝑧)  

It can be further written as five independent twists as 

𝑇1̂ = (0 0 0 | 0 0 1)  
𝑇2̂ = (0 0 0 | 0 1 0)  
𝑇3̂ = (1 0 0 | 0 0 0)     (4) 

𝑇4̂ = (0 1 0 | 0 0 0)  
𝑇5̂ = (0 0 1 | 0 0 0)  
Hence the freedom space Matrix of the FSF is written a 

ΠT = [𝑇1̂, T2̂, T3̂, 𝑇4̂, T5̂ ]𝑇  
The above mobility analysis shows that only one translational 

motion is constrained, but the body can still translate in the 
𝑦 & 𝑧 − direction and rotate about all three orthogonal axes. 
The same can be obtained through inspection as well. 
 
2.2. Mobility analysis of folded sheet flexure-based 2-DOF 
rotational platform  
 

 
 
Figure 2. A physical arrangement of screws in a suspended platform 
where all constraints are oriented randomly 

 
  A floating stage is designed with a combination of four FSFs, 
one end of the FSF is fixed with the base, while the other end is 
attached to the suspended platform. A global cartesian 
coordinate system is defined at point 𝑂. Constraint line ‘𝑺𝒊’ 
where 𝑖 = [1,4] is defined along the constraint direction of each 
FSF. The point ‘𝒂𝒊’ is located at the base where a local cartesian 
coordinate system is defined. The angle between line ′𝑶𝒂𝒊’ and 
the y-axis is represented by ‘𝜶𝒊’. ‘𝑺𝒛’ is the projection of the 
vector 𝑺𝒊 on 𝒙𝒚 plane and ‘𝛉𝒊’ and ‘Ø𝒊’ is the azimuthal angle of 
the point's orthogonal projection and the polar angles from a 
fixed (𝑧 −axis) zenith direction, respectively. ‘𝒓𝒊’ is the distance 
of point ‘𝒂𝒊’ from the origin ‘O’, as shown in Fig. 2. 

Wrenches for the general case are written as 

𝑊𝑖̂ = (𝐹𝑥𝑗 𝐹𝑦𝑗 𝐹𝑧𝑗|𝑀𝑥𝑗 𝑀𝑦𝑗 𝑀𝑧𝑗)  (5) 

𝐹𝑖𝑗 is the force along 𝑖𝑡ℎ − axis due to 𝑗𝑡ℎ  constraint. 

where  𝑖 = (𝑥 𝑦 𝑧) and 𝑗 = (1 2 …  𝑛) 
The constraint space matrix is written as 

∏𝑤 = [𝑊1,̂ 𝑊2,̂ 𝑊3,̂ 𝑊4 
̂ ] 𝑇   

Now, the reciprocity condition is used to find the twists 𝑇̂. For 
the given case, The Freedom space matrix is written as 

ΠT = [𝑇1̂, T2̂, … , T𝑓̂]T     (6) 

Where 𝑓 is the order of DOF. 
Further, the Adjoint transformation of screws is used to find 

the screws at specific locations [9]. 
 
2.2.1. Case 1: all constraints are parallel 
  

In this case, all four FSFs are parallels to the 𝑧-axis. Hence, for 
the given configuration, 𝑖 = [1,4] the angles 𝛉𝒊  =  ф𝒊 = 𝟎𝒐 and 
𝜶𝒊 = 𝟔𝟎𝒐. The screw is taken as unit length and 𝑟𝑖 = 50 𝑚𝑚, as 
shown in Fig. 3. 

 
 
Figure 3. A physical arrangement of screws in a suspended platform 
where all constraints are parallel (Case 1) 

 
Wrenches for case 1 with respect to the global coordinate 

system are given as 

𝑊̂1 = (0 0 1 | 25 43.3 0)  
𝑊̂2 = (0 0 1 | −25 43.3 0)    (7) 

𝑊̂3 = (0 0 1 | −25 −43.3 0)  
𝑊̂4 = (0 0 1 | 25 −43.3 0)  

The constraint space matrix is written as 

∏𝑤 = [𝑊1,̂ 𝑊2,̂ 𝑊3,̂ 𝑊4 
̂ ] 𝑇      (8) 

∏𝑤  has rank 3. It’s not a full rank matrix, and therefore, it is an 
over-constrained design.   

Hence, for a general twist 𝑇̂, Eqn. 3 is satisfied when   
𝑉𝑍 = Ω𝑋 = Ω𝑦 = 0  

Therefore, the general twist for the given case is 

𝑇̂ = (0 0 𝛺𝑍| 𝑉𝑋 𝑉𝑌 0)  
It can be further written as three independent twists as 

𝑇1̂ = (0 0 0 | 1 0 0)  
𝑇2̂ = (0 0 0 | 0 1 0)  
𝑇3̂ = (0 0 1 | 0 0 0)  

From Eqn. 6, the Freedom space matrix is written as 

ΠT = [𝑇1̂, T2̂, T3̂]T  
It shows that the arrangement can rotate about a single axis 

while it can translate in two orthogonal axes, as shown in Fig.3. 
 
2.2.2. Case 2: all constraints are concurrent 
 

 
 
Figure 4. A physical arrangement of screws in a suspended platform 
where all constraints are concurrent (Case 2) 
 

In this case, all four FSFs are oriented in such a way that 
constraint directions are concurrent at a point on 𝑧 −axis, as 
shown in Fig. 4. For the given configuration, we have chosen the 
angles  θ𝑖  = 30𝑜,   ф𝑖 = 49.11𝑜 and 𝛼𝑖 = 60𝑜. The screw is 
taken as unit length and 𝑟𝑖 = 50 𝑚𝑚, where 𝑖 = [1,4]. 



  

Wrenches for case 2 with respect to the global coordinate 
system are given as  

𝑊̂1 = (0.65 −0.38 0.65 | 16.4 28.3 0)  
𝑊̂2 = (0.65 0.38 0.65 | −16.4 28.3 0)      (9) 

𝑊̂3 = (−0.65 0.38 0.65 | −16.4 −28.3 0)  
𝑊̂4 = (−0.65 −0.38 0.65 | 16.4 −28.3 0)  

The constraint space matrix is written as 

∏𝑤 = [𝑊1,̂ 𝑊2,̂ 𝑊3,̂ 𝑊4 
̂ ] 𝑇   

∏𝑤 has rank 3. This configuration is also an over-constrained 
design. 

Hence, for a general twist 𝑇̂, Eqn. 3 is satisfied when 
𝑉𝑍 = 0, 𝑉𝑋 = −43.5𝛺𝑌 and  𝑉𝑌 = 43.16𝛺𝑋   

Therefore, the general twist for the given case is 

𝑇̂ = (𝛺𝑋 𝛺𝑌 𝛺𝑍 | −43.5𝛺𝑦 43.16𝛺𝑥 0)  

It can be further written as three independent twists as 

𝑇1̂ = (0 1 0 | − 43.5 0 0)  
𝑇2̂ = (1 0 0 | 0 43.16 0)  
𝑇2̂ = (0 0 1 | 0 0 0)    

It shows that the arrangement can freely rotate about 𝑍 − 𝑎𝑥𝑖𝑠, 
but the translation along 𝑋 − 𝑎𝑥𝑖𝑠 is coupled with rotation 
about 𝑌 − 𝑎𝑥𝑖𝑠, and translation along 𝑌 − 𝑎𝑥𝑖𝑠 is coupled with 
rotation in about 𝑋 − 𝑎𝑥𝑖𝑠 and vice versa. 

At the point of concurrence, wrenches for case 2 are given as 

𝑊̂1 = (0.65 −0.38 0.65 | 0 0 0)  
𝑊̂2 = (0.65 0.38 0.65 | 0 0 0)    (10) 

𝑊̂3 = (−0.65 0.38 0.65 | 0 0 0)  
𝑊̂4 = (−0.65 −0.38 0.65 | 0 0 0)  
At the point of concurrence, for a general twist 𝑇̂, Eqn. 3 is 
satisfied when  

𝑉𝑋 = V𝑌 = V𝑍 = 0  
Therefore, the general twist for the given case is 

𝑇̂ = (𝛺𝑥 𝛺𝑦 𝛺𝑧| 0 0 0)  

It can be further written as three independent twists as 

𝑇𝑅1̂ = (1 0 0 | 0 0 0)  
𝑇𝑅2̂ = (0 1 0 | 0 0 0)  
𝑇𝑅𝑍̂ = (0 0 1 | 0 0 0)  

From Eqn. 6, the freedom space matrix is written as 

ΠT = [𝑇R1̂, TR2̂, T𝑅𝑍̂]T  
It shows that the arrangement can freely rotate about all 

orthogonal axes at the point of concurrence, as shown in Fig. 4, 
i.e., it acts as a spherical joint. 
 
2.2.3. Case 3: constraints intersect at two different points 
 

 
 
Figure 5. A physical arrangement of screws in a suspended platform 
where only two screws intersect at a point (Case 3) 

 
In this case, all four FSFs are oriented in such a way that 

𝑺𝟏& 𝑺𝟐 intersects at a point while 𝑺𝟐 & 𝑺𝟑 intersects at a 
different point on 𝑋𝑍 −plane, as shown in Fig. 5. For the given 
configuration, the angles θ𝑖  = 49.11𝑜,   ф𝑖 = 41.41𝑜 and 𝛼𝑖 =
60𝑜. The screw is taken as unit length and 𝑟𝑖 = 50 mm, where 
𝑖 = [1,4]. 

Wrenches for case 3 with respect to the global coordinate 
system are written as 

𝑊̂1 = (0.43 −0.5 0.75 | 18.7 32.5 10.8)  
𝑊̂2 = (0.43 0.5 0.75 | −18.7 32.5 −10.8)  (11) 

𝑊̂3 = (−0.43 0.5 0.75 | −18.7 −32.5 10.8)  
𝑊̂4 = (−0.43 −0.5 0.75 | 18.7 −32.5 −10.8)  

The constraint space matrix is written as 

∏𝑤 = [𝑊1,̂ 𝑊2,̂ 𝑊3,̂ 𝑊4 
̂ ] 𝑇   

∏𝑤  has rank 4. The matrix is full rank and therefore, the design 
is exactly constrained.  

For a general twist 𝑇̂, Eqn. 3 is satisfied when 
𝑉𝑍 = 𝛺𝑍 = 0,  𝑉𝑋 = −75.58𝛺𝑌 and 𝑉𝑌 = 37.4𝛺𝑋  

Therefore, the general twist for the given case is 

𝑇̂ = (𝛺𝑥 𝛺𝑦 0| −75.58𝛺𝑦 37.4𝛺𝑥 0)  

It can be further written as two independent twists as 

𝑇1̂ = (0 1 0 | − 75.58 0 0)  
𝑇2̂ = (1 0 0 | 0 37.4 0)  

From Eqn. 6, the freedom space matrix is written as: 

ΠT = [𝑇1̂, T2̂]T  
It shows that the translation along 𝑋 − 𝑎𝑥𝑖𝑠 is coupled with the 
rotation about 𝑌 − 𝑎𝑥𝑖𝑠, and translation along 𝑌 − 𝑎𝑥𝑖𝑠 is 
coupled with rotation in about 𝑋 − 𝑎𝑥𝑖𝑠 and vice versa, as 
shown in Fig. 5. 

3. Results and discussion 

Analytical results show that in Case 1, the floating platform 
translates along 𝑋 𝑎𝑛𝑑 𝑌 −axes and rotates about 𝑍 −axis. The 
translation about 𝑍 −axis, and the rotation about 
𝑋 𝑎𝑛𝑑 𝑌 −axes are constrained. In Case 2, all translations are 
constrained while the rotations are allowed about its orthogonal 
axes at the concurrent point of constraint lines. Case 2 is 
identical to a spherical joint. Case 3 has two rotational DOFs 
about 𝑅1& 𝑅2 − 𝑎𝑥𝑒𝑠. Freedom, general twist, and wrenches of 
the FSF-based floating platform for different cases are 
summarized in Tab. 1. 

 
Table 1 Motion and constraint space of FSF-based floating platform 

Cases Freedom Symbol Twist [𝑻]̂ Wrench [𝑾]̂  

Case 1 2𝑃 − 𝑅 [𝑃𝑋̂ 𝑃𝑌̂ 𝑅𝑍̂] [𝑃𝑍̂ 𝑅𝑋̂ 𝑅𝑌̂] 

Case 2 3𝑅 [𝑅1̂ 𝑅2̂ 𝑅𝑍̂] [𝑃𝑋̂ 𝑃𝑌̂ 𝑃𝑍̂  ] 

Case 3 2𝑅 [𝑅1̂ 𝑅2̂] [𝑃𝑋̂ 𝑃𝑌̂ 𝑃𝑍̂ 𝑅𝑍̂] 

Where 𝑅𝑖  & 𝑃𝑖 represent the rotation and translation about 

𝑖𝑡ℎ −axis, respectively. 
Modal analysis was performed on ANSYS Workbench to obtain 

the frequencies of different vibration modes. The material of the 
FSF is structural steel with Young’s Modulus of 210 GPa and 
Poisson’s ratio of 0.3. The modal frequencies of different modes 
are summarized in Tab. 2 

The stiffness of the system for a particular mode, 𝑘𝑒  is 
written as 

𝑘𝑒 = 𝑚𝑒ω𝑒
2      [13] 

Where ω𝑒 and 𝑚𝑒 is the modal frequency and mass for a 
particular mode respectively. The stiffnesses are compared 
using Eqn. 13. Mobility of the platform for different cases can be 
obtained and verified by comparing the ratio of stiffnesses. 

 



  

 
 

Figure 6. Representation of the Mode shape analysis of (a)case 1, (b) 
case 2, and (c) case 3 
 
Table 2. Modal frequency of different modes of FSF-based floating 
platform 

Modal frequency mode Magnitude (Hz) 

Case 1 Case 2 Case 3 

Translation motion in x-axis 53.68 291.33 500.20 

Translation motion in y-axis 53.86 173.58 243.62 

Translation motion in z-axis 535.13 279.52 346.8 

Rotation motion about x-axis 617.03 70.99 64.48 

Rotation motion about y-axis 1199 74.22 77.80 

Rotation motion about z-axis 98.62 89.48 184.22 

 
From Tab. 2, it is observed that for case 1, the configuration is 

compliant in translation along 𝑋, 𝑌 −axes and rotation about 
𝑍 −axis. Similarly, for case 2, the configuration has less stiffness 
for three rotations at the point of concurrency, while the 
stiffness is high for all the translations. Case 3 is stiffer for all 
translations and rotation about  𝑍 −axes, but it has less stiffness 
for the rotation about 𝑋, 𝑌 −axes.  

Both analytical and modal analysis results are summarized in 
Tab. 3. It has been observed that DOFs of all the cases are the 
same in both analytical and modal analysis results. These 
methods can be further used to design a mechanism with two 
remote axes of rotations for the different tracking applications, 
as shown in case 3. Space tracking, radar positioning, 
astronomical telescope mounts, laser scanning and positioning, 
etc., are the primary area of application. 
 
Table 3 Comparison of Analytical and modal analysis results of different 
cases of FSF-based floating platform. 
 

FSF-based floating 
platform 

Freedom space matrix 
Analytical  Modal analysis 

Case 1 [𝑃𝑋̂ 𝑃𝑌̂ 𝑅𝑍̂] [𝑃𝑋̂ 𝑃𝑌̂ 𝑅𝑍̂] 
Case 2 [𝑅1̂ 𝑅2̂ 𝑅𝑍̂] [𝑅𝑋̂ 𝑅𝑌̂ 𝑅𝑍̂] 

Case 3 [𝑅1̂ 𝑅2̂] [𝑅𝑋̂ 𝑅𝑌̂] 

4. Conclusion 

We used screw theory to perform a mobility pattern analysis 
for three different configurations of FSF-based floating 
platforms in which wrenches are defined along the constraint 
directions of FSF. The constraint space matrix is not a full rank in 
the case of over-constrained configurations. Further, reciprocity 
condition of the screw is used to find the twists for individual 
cases and adjoint transformation of the screw was used to get 
the screws at a desired location. Modal analysis was performed 
to validate the analytical results. Analytical and modal analysis 

results were compared and found to be similar. Screw based 
mobility analysis can be further used to design suitable flexure-
based mechanism for space tracking applications. 

5. Future work      

A physical FSF-based floating platform can be developed to 
study the effect of FSF orientation on the floating platform 
mobility. Further optimisation will be performed to find the 
orientation of FSF for a specific application. 
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