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Abstract 
Powder bed fusion of metals by a laser beam (PBF-LB/M) is more commonly used than ever in a commercial setting. This requires 
more focus on product quality, homogeneity, and reproducibility. To obtain this, fast predictive models can be used. These models 
can give an indication of the approximate properties of the products before they are finished. This study aimed to develop predictive 
models for selected quality metrics and gas flow variables. The models were developed by analysis of images captured during a build 
of PBF-LB/M printed components in 316L stainless steel. The images were corrected for lighting inconsistencies followed by 
component-wise quantification of mean pixel intensity which formed the basis for the predictive models generated using JMP Pro 
16. Response screening analyses were done to identify significant correlations between quantification methods and quality metrics 
or gas flow variables. A correlation between the quality metric bulk O2, which is the oxygen uptake in the bulk material, and the 
quantification method "mean value bulk" was found. Additionally, a correlation between the gas flow variable oxygen percentage in 
the build chamber and the "mean value circular” quantification method was found. Thus, two predictive models were developed. 
The model for bulk O2 could not be validated as further data processing was needed for the remaining components used for 
validation. This was mainly due to time and equipment limitations. The oxygen percentage model was tested but seemed unusable 
as the predictions were inaccurate. This result is likely caused by depositions of process by-products on the surface of the studied 
components.   
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1. Introduction  

Powder bed fusion of metals by a laser beam (PBF-LB/M) is a 
technique and an additive manufacturing process that allows 
three-dimensional manufacturing. PBF-LB/M is used today for 
both rapid prototyping, but also to produce complex objects and 
is utilised in both research and industrial contexts. This setting 
requires more focus on product quality, homogeneity, and 
reproducibility. 

As with any other technology, PBF-LB/M has its disadvantages. 
The process parameters regarding laser power and the 
protective gas atmosphere greatly influence the quality of 
components in relation to mechanical properties, tolerances, 
and visual appearance, and variations in these can lead to a 
critical failure of the components [1, 2]. To better control these 
process parameters, the development of predictive models is 
becoming increasingly important. A predictive model can predict 
the outcome, e.g., a mechanical property, when given the 
correct input.  

The influence of gas flow variables (oxygen percentage, gas 
flow speed and relative pressure) on the quality metrics (internal 
channel roughness, bulk porosity, average channel diameter,  
equivalent diameter corresponding to the unobstructed cross-
sectional area of the channel and the bulk hardness) in 316L 
stainless steel components were investigated by Klingaa et al. 
[3]. This was done using an SLM 280 PBF-LB/M system. The 
correlations found were used for the development of predictive 
models of the quality metrics. 

Using quality metrics in predictive models is important because 
of the potential for in-situ control of the process parameters 
thereby increasing the probability of obtaining the desired as-
built mechanical properties. The gas flow variables can 
potentially be used for sensor validation and can be 
implemented in a monitoring system warning the user if a 
parameter drift occurs. Overall, these measures could possibly 
reduce the number of failed builds, resulting in less waste of 
materials and energy. Additionally, the time spent testing for 
mechanical weaknesses and post-processing could likely be 
reduced by the prediction of mechanical properties and thus 
ensuring operation in the optimal parameter range.  

This study aimed to investigate the same quality metrics as 
Klingaa et al. [3] plus one additional, the bulk oxygen uptake, and 
the gas flow variables through image analysis. This was done 
with the greyscale image data obtained by Klingaa et al.  [3] from 
the embedded camera in the SLM 280 PBF-LB/M system. 
Correlations based on image data were then used for producing 
simple predictive models. 

2. Methodology      

The method used is composed of four steps.  
1) Correction for lightning inconsistencies. 
2) Separation of regions of interest from the background. 
3) Quantification of the images. 
4) Creation of simple predictive models.  
 

The methodology was applied to images of test samples 
designed for the purpose. These were called components.   
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The components were designed in 316L stainless steel by Klingaa 
et al. [3] to test the selected quality metrics. This was done by 
altering the gas flow variables randomly for each component. 
The composition of a component can be seen in figure 1. 

 

 
Figure 1. Design of a component marked with the three regions of 
interest marked by the blue, yellow and green dotted lines. (Sideways 
view) 
 

The components were printed on top of each other and 
separated by 4 mm of support material. The components could 
be further categorized into towers. A tower consisted of 20 
components. Four towers were printed in four different 
locations on the build platform as seen in figure 2. 

 
Figure 2. Tower placement on the build platform. (Top view) 
 

 
2.1. Image correction     

First, the images were corrected because the image-to-image 
lighting changed randomly. The correction aimed to create even 
lighting throughout the build platform, as the edges appeared 
darker than the centre. This phenomenon is known as vignetting 
and can be seen in figure 2. The image correction was based on 
the colour of the background. The towers were overlayed with 
the mean intensity of the adjacent pixels. The images were then 
divided into 20x20 grids, and the mean value for each grid 
square was calculated. The correction was calculated with a 
target background light intensity of 127.5 as: 
 

𝐶𝑛 = 127.5 − �̅�𝑛  
 

(1) 

Where 𝐶𝑛 is the correction applied to all pixels in the grid square 

𝑛, �̅�𝑛 is the mean pixel intensity of the grid square 𝑛 and 𝑛 is the 
grid square number running from 1 to 400. The towers were 
then reinserted, and the correction was applied on every grid 
square. The correction resulted in an expansion of the intensity 
scale from 0 – 255 to -127.5 – 382.5. 
 
 
 

2.2. Background separation 
 A component contained three regions of interest (ROI), which 

were studied. To get the desired ROI, a combination of masks 
and layers was used. The layers containing the ROI can be seen 
in figure 1 and the masks can be seen in figure 3. 

 
Figure 3. The different mask types used on images depending on ROI. 
(Top view) 

The masks were overlayed on the images thereby removing all 
but the white-coloured pixel. This resulted in the components 
being separated from the background. 
 

2.3. Image quantification      
The image quantification was a two-step process. First, the 

mean pixel intensity was observed for each component, then the 
components were binned.  

 
2.4. Mean pixel intensity      

The mean pixel intensity was obtained with an in-house 
Python code by stacking all the image layers needed for the 
desired ROI. The mean pixel intensity was then calculated as: 
 

𝐼(̅𝑥, 𝑦) =
∑ 𝐼(𝑥, 𝑦)𝐿

𝐿
𝐿=1  

𝐿
 

 

(2) 

Where 𝐿 is the number of layers in the ROI studied. 𝐼 is the 
intensity and 𝑥 and 𝑦 are the pixel coordinates. Iteration through 
all relevant 𝑥 and 𝑦 positions resulted in a mean light intensity 
component. 
 
2.5. Binnig of data  

Each mean light intensity component was binned once it was 
calculated. The binning was considered necessary as the image 
data were inhomogeneous and exposed to sources of error. The 
Python code assigned each of the 20 mean light intensity 
components to a bin. The bin size was five which gave intervals 
going from 0 to 102. The binned data were both exported to JMP 
Pro and plotted. This plot is seen in figure 5.  
 
2.6. Predictive models 

The predictive models were created using JMP Pro. First, the 
potential correlations were identified. This was done with the 
JMP response screening analysis, which took each possible pair 
of responses and factors and checked the correlation by a 
significance test with a selected significance level of 5%. The 
correlations were divided into two groups (1) the correlations 
between pixel intensity and the three gas flow variables; oxygen 
percentage, gas flow speed, and pressure, and (2) the 
correlations between pixel intensity and the quality metrics 
porosity, surface roughness, average diameter, equivalent 
diameter, hardness, and bulk O2 uptake. 

The grouping was done as the correlation between pixel 
intensity and the gas flow variables were interesting to 



 

investigate because these variables were identical for every set 
of components in all towers. This made validation across tower 
positions possible by basing the model on the best-positioned 
tower regarding gas flow and lighting, namely Tower 1, and then 
using the model to estimate the gas flow variables in the 
remaining tower positions (2, 3 and 4). The correlations for 
quality metrics could only be investigated for Tower 1, as the 
other towers had not been analysed.  

Predictive models were created using real values with the JMP 
function “Fit model”. The gas flow variable and quality metric 
were assigned as the response and the mean pixel intensity for 
each ROI was set as the factor. Both the main effect and the 
interaction of the factor were included. Non-significant terms 
were removed, and final models were created. 

3. Results      

A correlation between oxygen percentage in the build 
chamber and the quantification method "mean value circular", 
which is the mean pixel intensity for the circular ROI, was found. 
Furthermore, a correlation between bulk O2, and the 
quantification method "mean value bulk", which is the mean 
pixel intensity for the bulk ROI, was found. Thus, two predictive 
models were developed. The predictive formula for oxygen 
percentage is: 

 
𝑂(𝑀𝑉𝐶) = −0.045531687 ∙ 𝑀𝑉𝐶 +  3.2101893314 (3) 

Where MVC is the observed mean pixel intensity value for the 
circular ROI. The predictive formula for bulk oxygen percentage 
is: 
 

  
𝐵𝑢𝑙𝑘 𝑂2(𝑀𝑉𝐵) = −0.000883533 ∙ 𝑀𝑉𝐵

+ 0.0922218097 

 
(4) 

Where MVB is the observed mean pixel intensity value for the 
bulk ROI. 

The oxygen level was predicted for the remaining towers and 
the mean residuals were calculated as the actual values minus 
the predicted value. These can be seen in table 1. 
 
Table 1 Mean residuals for oxygen prediction. 

 

Mean residuals – Oxygen model 

Tower 1 Tower 2 Tower 3 Tower 4 

0.02 -0.15 -0.24 -0.68 

 
The prediction residual for Tower 1 is near 0. The residuals for 

the remaining towers are negative. A negative residual means 
that the model predicts higher oxygen levels than anticipated. 

4. Discussion      

Even though the deviation of the residuals, in table 1, seems 
to be systematic this may not be the case. It can be hypothesised 
that the deviation is a result of process by-products, as dark-
coloured by-products from the laser scanning could be 
deposited onto the components and reduce the pixel intensity. 
Further, the amount of deposition varies with tower position. 
Tower 1 is the only tower not affected by spatter depositions. 
Towers 2 and 3 could affect each other, with Tower 2 being 
scanned first and thereby depositing spatter particles and by-
products on Tower 3, which is then included in the bulk once 
scanned. This is illustrated in figure 6. 

It can be observed from the work of Repossini et al. [4] that 
spatter particles may travel up to 10 mm against the gas flow 
direction while using default scanning parameters. When 
scanning at lower laser power, the same is seen by Bidare et al. 
[5]. Towers 3 and 4 are positioned 7.5 mm apart, which makes 
the spatter deposition plausible. Further, this effect can be 
reinforced by by-product clouds resulting in lower laser energy 
densities because of beam attenuation. 

Tower 4 is placed next to the gas inlet, which is a region known 
for bad gas flow. The gas flow is individual for every PBF-LB/M 
system. Still, Schniedenharn et al. [6] visualized for a laboratory 

Figure 5. Spatter depositions on Tower 3. 

Figure 4. Illustration of rating code with the surface colours of the components in the plot. 
 



 

machine the gas flow velocity profiles which showed an uneven 
velocity distribution in both the x and y direction, especially 
around the inlet. A fair assumption is that the gas flow is more 
turbulent at the inlet, where Tower 4 is positioned. By-products 
and spatter from Tower 4 could be projected into the air and 
redeposited on Tower 4 because of insufficient gas flow, as 
illustrated in figure 7.  

 
Figure 6. Depositions of by-products on Tower 4 
 

If the hypothesis holds true, then the model from equation 2 
is a bad descriptor for oxygen. In that case, the model does not 
describe oxygen content as intended but rather spatter and by-
product depositions. The problem occurs because oxygen 
influences both the pixel intensities and spatter. According to Du 
Plessis et al. [2] a correlation between oxygen and surface colour 
exists, which is expressed as different pixel intensities. Oxygen is 
also a cause of spatter, as shown by Liu et al. [7]. This result 
makes the oxygen model obsolete and is likely the reason for the 
result in table 1.  

The bulk O2 model could, contrary to the oxygen model, be a 
reasonable descriptor of oxygen bulk uptake. This is because 
Deng et al. [8] showed that increased spatter inclusions resulted 
in a higher oxygen uptake, which resulted in lack-of-fusion 
defects and bad tolerances. Therefore, in typical use cases, it is 
desirable to reduce bulk O2. If the stated hypothesis is true, it 
would be expected to see the highest number of spatter 
inclusions and bulk O2 in Tower 4 followed by 3, 2 and 1. 

In general, it seems that the image analysis predicts the 
amount of spatter deposited on the components. The surface 
oxidation of spatter particles was investigated by Simonelli et al. 
[9].  The spatter surface consisted mainly of oxides from volatile 
elements of 316L. Oxides are hard and brittle and may influence 
the hardness, ductility, and strength of the components, despite 
no correlations found in this study. These effects can either be 
critical or desired depending on the product manufactured. 

The predictive models were chosen to be simple. The 
advantage of doing this rather than relying on simulation-based 
evaluation is the computation time. This is favoured when doing 
an in-situ evaluation, as more demanding methods could slow 
the PBF-LB/M process. 

5. Conclusion 

From the study, the following conclusions can be drawn. There 
are strong correlations between: 

- Oxygen and mean value circular 
- Bulk O2 and mean value bulk 

The correlations were utilised in simple predictive models, which 
have been created, and the results examined. The results 
showed an error for the oxygen model related to tower position, 
probably due to by-product and spatter depositions. The oxygen 
model and its results are of no importance, but the method for 
creating this can still be applied to other builds, materials or PBF- 
LB/M systems. 

The model regarding bulk O2 and mean value bulk is likely 
more applicable, but final data processing for the remaining 
towers and subsequent model validation is still needed. This 
correlation is important as higher oxygen uptake can affect the 
quality of the components. The work described was done with 
the developed quantification and image analysis techniques. 
The results showed potential for further development in the 
field of image analysis with embedded cameras of PBF-LB/M 
printed components to predict print parameters.  

This study allows for future work. The model can only predict 
bulk O2, but this should be implemented in a feedback loop to 
fully utilise the capabilities, sending information about 
parameter correction to the PBF-LB/M system in situ. For this to 
happen, further studies need to be done to investigate the 
relationship between Bulk O2 and other traditional PBF-LB/M 
parameters such as scanning speed, laser power etc. Further, as 
spatter seems to have a significant impact on the pixel 
intensities observed, further studies could be made to control 
the spatter deposition on neighbouring parts. This could result 
in an autonomous system calculating either ideal part placement 
or gas flow to reduce the amount of spatter deposited from 
adjacent parts, as seen in Towers 2 and 3 and self-deposition, as 
seen in Tower 4. Also, understanding the full effect of large 
spatter depositions regarding oxide inclusions and the effect on 
hardness, ductility, and strength could be interesting and could 
have implications for the future of spatter deposition and image 
analysis. 
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