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Abstract 
Additive manufacturing (AM) considerably widens design freedom and allows the manufacturing of complex geometries. These 
complex geometries, such as lattice structures, are not free from defects. Metrologists and manufacturers then work together to 
measure, understand, and correct defects introduced during AM. Metrologists in particular use X-ray computed tomography (XCT) 
to reveal both external and internal defects that would not be accessible to traditional optical measurements. Whereas existing 
methods to extract geometry from volumetric XCT measurement mainly rely on thresholding, other recently developed methods 
circumvent the need to choose thresholding values. The virtual volume correlation (V2C) method, for example, involves neither 
thresholding nor user-dependent step to directly extract geometrical and dimensional defects from lattice structure volumetric data. 
However, V2C requires a defined defect basis in order to decompose the measured defect into a sum of elementary defects. This 
paper investigates three different defect bases: analytical, strut natural 3D vibrations, and Laplace-Beltrami eigenfunctions. Each of 
these bases are implemented with V2C to represent metal powder bed fusion (PBF) lattice strut geometrical and dimensional defects. 
The basis suitability to represent the defect is estimated, and the representation efficiencies are compared. The paper concludes by 
analysing which of the three bases are the most representative and the most adapted to the V2C methodology with a reliable 
computation time. 
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1. Introduction   

the surrounding features [2].  
 
By its volumetric nature, X-ray computed tomography (XCT) is 

procedure: projection, reconstruction, and surface 
determination. Whereas projection and reconstruction are 
mainly performed by reliable and systematic algorithms, surface 
determination is more debated. From the reconstructed 

 
The virtual volume correlation (V2C) methodology has 

determination procedure for identifying geometrical and 
dimensional defects. Relying on a defined defect basis, a virtual 
volume with known geometry is successively deformed until the 

difference with the XCT reconstructed volume is minimised. That 
methodology does not require surface determination. With V2C, 
the defect representation suitability is deeply linked to the 

Additive  manufacturing  (AM)  enables  the  production  of  chosen defect basis. Defect basis is the collection of deformation 
complex  geometries  that  cannot  be  achieved  by  traditional  modes whose sum best fits the measured defect. Previous work 
manufacturing processes [1]. Lattice structures, which consist of  [5]  relied  on  an  analytical  basis  proposed  in  the  tolerance 
the  3D  repetition  of  an  unit  cell,  illustrate  this  complexity.  analysis  field  [7]  for  implementation  simplicity  on  cylinder 
Optical measurement of these structures is then challenging as  shape. However, this work showed the limitation of this defect 
features of interest may be internal to the matter, or hidden by  basis.  This  basis  neither  represent  non-regular  defects  nor 

integrate surface quality defects where lower wavelength 
defects stay out of the scope of study.  

 
In order to better represent these lower wavelength defects, an  efficient  tool  to  reveal  features  that  are  not  accessible  to 

optical  measurement  [3].  XCT  measurement  is  a  three-fold  other  defect  bases  are  considered  as  alternative  defect 
descriptors. This paper investigates the effect of the chosen 
defect basis on the defect representation for AM lattice struts. 

 
This paper is organised as follows. Section 2 details each of the 

volume,  surface  determination  consists  in  sorting  grey-level  considered defect basis as well as the undertaken methodology. 
voxels composing the volume to identify the measured material  Section  3  presents  the  analysis  context  where  comparative 
boundary.  Above  the  existing  surface  determination  results  are  extracted  between  the  computed  correlated 
methodologies,  such  as  global  or  local-adaptive  thresholding,  geometries  and  computer-aided  design  (CAD)  and  ISO50% 
the  literature  shows  there  is  no  standard  procedure.  Surface  geometries. These results are discussed in Section 4 where bases 
determination  methodology  remains  the  user’s  choice.  are  compared  by  observed  deviations  and  computation 
However,  discrepancies  have  been  observed  between  the  requirements. 
thresholding methodologies [4].  

2. Methodology and defect bases 

recently  been  proposed  [5,  6]  as  an  alternative  surface  2.1. V2C overview  
V2C consists in identifying the displacement field 𝐮 embedded 

in the physical volume 𝑓, by iteratively deforming the virtual 



  

(1) 

(3) 

(ROI) of the measured volume is defined in equation 1:  

Φ(𝐮) =  [𝑓(𝐗) − 𝑔(𝐗 + 𝐮)]  𝑑Ω 
 

The displacement field 𝐮 is assumed to be expressed by modal 
             decomposition as detailed in equation 2 : 

𝐮 =  𝜆 𝐮   

where 𝐮  are the elementary modes which expression are 
known. The collection {𝒖 } { ,…, } composes the defect basis. 
𝜆  is the modal amplitude (also referred as modal participation 
in the literature) that should be identified by minimising the 
correlation score Φ: 

{𝝀𝒎𝒊𝒏
 } =  𝑎𝑟𝑔𝑚𝑖𝑛 Φ (𝒖) 

                                                𝝀         
In the following, three defect bases {𝒖 } { ,…, } are considered 
for identifying AM lattice strut geometrical and dimensionnal 
defects. The considered modes will then be adapted to strut 
geometry. 
 
2.2. Defect bases 
2.2.1. Analytical basis 

The analytical defect basis is composed of the overall defect 
decomposition into simpler defects. The decomposition for 
cylindrical struts is three-fold: registration modes, vertical 
modes, and plane modes. Registration mode corrects the virtual 
geometry towards its position or radius dilatation deviation. 
Vertical modes such as hourglass of vertical waviness consider 

chosen according to previous work [5]. 
 

 
Figure 1: Analytical modes representation 

 
2.2.2. 3D Vibration basis  

using the CATIA Generative Structural Analysis workbench. In 
this workbench, a free frequency analysis is performed from the 

 

 
Figure 2: 3D vibration modes representation 
 
2.2.3. Laplace-Beltrami eigenfunctions basis   

Laplace-Beltrami (LB) operator is the generalisation of the 
Laplacian operator to Riemann manifolds. The discretisation of 

volume 𝑔. The correlation score Φ over the region of interest  the LB operator over a mesh is explained in [9], where meshed 
surface is described by a discrete signal. According to Fourier 
transform theory, eigenvectors’ decomposition of this signal 
leads to elementary displacement eigenfunctions. The sum of 
these eigenfunctions, weighted by eigenvalues, reconstructs the 
original signal. In this paper, displacement fields are generated 

(2)  for the first 300 LB modes. Figure 3 shows the LB decomposition 
from the ISO50% surface mesh. 

 
Figure 3: LB modes representation 

3. Analysis context 

Each of the previously defined bases is successively 
implemented in the V2C code where the sample and the analysis 
context is described in the following section. 
 
3.1. Sample manufacturing and measurement  

The sample is a vertical strut representative of an AM lattice 
structure. The strut has a 0.6 mm radius and a 5 mm length, 

the  geometry  variability  along  the  strut  axis.  Plane  modes  designed in a CAD software. The lattice structure was produced 
illustrate the effect of similar defects all along the strut axis and  by laser powder bed fusion (LPBF) on an  Addup FormUp 350 
are defined in a strut plane. Figure 1 depicts the decomposition.  using Inconel 718 powder and the printing parameters displayed 
This  paper  considers  the  following  analytical  modes:  rigid  in Table 1. 
registration,  dilatation,  taper,  hourglass,  2  waviness  modes   

along the strut axis, and 20 plane modes. This configuration was  Table 1: Printing parameters 

Powder Inconel 718 

Layer thickness 40 µm 

Laser power 220 W 

Scan speed 2100 mm.s−1 

Contour scan power 210 W 

Contour scan speed 1800 mm.s−1 

Hatch space 55 µm 
 

The manufactured sample was washed with water and dried 
with compressed air. It was removed from the substrate using 

The 3D vibration basis [8] is generated from the CAD model  an  electrical  discharge  machine.  To  avoid  any  edge  effect 
resulting from the substrate removal, the region of study was 
reduced to a 4 mm length. 

meshed strut and vibration displacement fields are generated   

for  the  first  300  natural  vibrating  modes.  Figure  2  illustrates 
some of the developed modes. 

The sample was then measured using XCT and the following 
parameters. Instrument: North Star Imaging X50, X-rays source: 
XRayWorX, Detector: Dexela 292, geometric magnification of 33 
leading to a voxel size of 4.5 µm, tube voltage 150 kV, tube 
current 40 µA. A warmup scan of approximately 30 minutes was 
performed prior to the scan. Volumetric reconstruction was 
performed from 900 projections in the manufacturer’s software, 
using a filtered backprojection algorithm and a beam hardening 
correction without specific filter. Projections were saved in a 
.raw file format.  

3.2. Analysis workflow  
V2C is applied to the reconstructed data relying successively 

on the three defect bases. V2C then outputs three geometries 
deformed relative to their defect basis. Cloud-to-mesh distances 
are separately computed between these deformed geometries,  



  

Figure 4: Data processing pipeline 
 

 

 
Figure 5: Cloud-to-mesh distances between correlated and CAD geometries (top); between correlated and ISO50% geometries (bottom)

and both nominal mesh extracted from the CAD model and the 

 
3.3. Results  

model as well as the meshed surface-determined ISO50%. In 

these histograms, the bin number was chosen according to the 
ISO50% mesh determined from the XCT reconstructed volume.  Sturges rule. 
Figure 4 summarises the undertaken data pipeline.  

Comparison datapoints were further raster-scanned to meet 
the density of the least dense dataset. Such representations 

Figure  5  shows  the  cloud-to-mesh  deviation  distributions  allow  two  interpretation  fields:  the  efficiency  of  one  basis 
between each of the correlated geometries and the meshed CAD  compared to another, and the degree of similarity of correlated 

geometries.



  

generating correlated geometries. All computations were 
performed using Matlab on a high-performance computing 
(HPC) cluster.  

 
Table 2: Computation requirements according to the defect basis 

Defect basis Real Time Needed RAM/Gb 
Analytical 2h36mins 392 
3D Vibration 18h56mins 112 
LB 20h28mins 221 

4. Discussion  

compared to the meshed CAD model, each comparison dataset 
indicates a negative mean value. This result illustrates the 
contraction effect of the strut whilst manufacturing with the 
LPBF process. In addition, the standard deviation values of each 
correlated geometry compared to the meshed CAD model show 
how V2C identifies defects embedded in the physical volume: 
the vibrational and LB bases have increased standard deviation 
values for the CAD comparison. In this case, the vibrational basis 
and the LB basis include surface quality defects in their 
representation because, as a first approach, the cut-off number 
of modes was arbitrarily set. Consequently, lower wavelength 
defects belonging to surface quality defects are not optimally 
taken into account. However, the cloud-to-mesh distances range 
is narrower for the analytical basis than the vibration or the LB 
bases.  
 

The ISO50% mesh is closer to the real manufactured part 
geometry than the CAD mesh. The mean values are centred 
when correlated geometries are compared to the ISO50% mesh. 
The analytical defect basis dataset compared to the ISO50% mesh 
even shows a quasi-null mean value. With the adopted 
configuration of the analytical defect basis, overall surface 
defects are smoothed and averaged, leading to this mean-
centred value for all correlated geometries. Their reduced 
standard deviation values show the advantage of both 
vibrational and LB bases in comparison to the analytical defect 
basis. The former bases integrate surface quality defects in the 
identification process that is not permitted by the analytical 
defect basis. The voxel size of 9 microns should also be reminded 
as a limit of further interpretation of the obtained standard 
deviation results. 
 

Arguments for considering a defect basis rather than another 
would also rely on the computation performances, as shown in 
Table 2. Analytical basis requires less computation time but a 
large  amount  of  RAM  to  provide  only  with  geometrical  and 
dimensional defects. The basis has few defined modes and a 
dense deformed mesh. On the contrary, the vibrational and the 
LB bases require less RAM but an increased computation time to 
provide with geometrical and dimensional defects as well as 
lower wavelength defects. These bases have more defined 
modes and reduced deformed mesh densities. These 
discrepancies are explained by the generation of the defect 
bases and the datapoints being handled. Whereas analytical 
basis point density can be directly set in the V2C code, 
vibrational basis depends on the CAD mesh density and the 
vibrational modes generated on Catia. LB eigenfunctions are 
generated from the ISO50% mesh i.e., a very dense mesh. The 
latter requires a sampling step (see Figure 4) to compute the LB 
modes in a reasonable time.   

Table  2  shows  the  computing  parameters  required  for  5. Conclusion      

This work investigates three defect bases to identify LPBF 
geometrical and dimensional defects relying on the V2C 
methodology. These defect bases are the analytical basis 
defined inside the V2C code, the 3D vibrational basis generated 
from CATIA modal analysis, and the LB eigenfunctions basis 
computed from the strut ISO50% mesh. Whereas the analytical 
basis is limited to geometrical and dimensional defects, 
vibrational and LB bases represent lower wavelength defects. 
Each of these bases requires different numerical resources due 
to the diverse nature of basis generation. Whereas the analytical 
basis was generated within V2C, the LB eigenfunctions require 

As  shown  in  Figure 5,  when  correlated  geometries  are  subsampling of the ISO50% mesh. These preparation steps alter 
the computation requirements.  
 

For each of these bases, the number of modes to take into 
account should be linked to the desired defect representativity. 
This paper only aims at providing a proof of concept study, and 
the number of modes for vibrational and LB bases was arbitrarily 
set; further work regarding the defect representativity should be 
undertaken. This complementary study, already performed for 
the analytical defect basis, would be the object of future work 
for both vibrational and LB bases. 
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