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Abstract 
 
With the freeform structured surface becoming more dominant in the engineering surface metrology and manufacturing as they 
have deterministic patterns which designed with some specific functionalities to meet the engineering requirements such as optical, 
electric contact and bearing properties, the ability to adequately characterise them is crucial for optimising the performance through 
reducing cost and achieving precise control of such specifically functional components. A general surface characterisation scheme 
for complex freeform includes three operations: form removal, denoising, segmentation. Following the first two steps, the surface 
measurement will be converted to a scale-limited surface. The next crucial step is segmentation, which separates the surface 
topography into a number of non-intersecting regions so that they can be analysed separately and in relation to one another, for 
example, by computing shape attributes or its pertinent dimensions. Traditional computer-vision methods such as watershed and 
active contour approaches perform well on this task, but these algorithms have high computational complexity with long running 
time and require test phase for fine-tuning and rely on users-judgement. Additionally, inappropriate initial conditions will lead to 
over- or under- segmentation. Deep learning-based segmentation techniques become dominated with outstanding performance and 
higher accuracy. Therefore, we proposed a novel deep learning-based surface segmentation method for the freeform structured 
surfaces which based on the U-Net model and data augmentation techniques are utilised to enlarge the raw dataset of twenty surface 
measurements. The training data include converted RGB-images of surfaces and corresponding feature masks which is the ground 
truth pixel labels generated using computer vision techniques including thresholding and edge operators. Once the model has been 
trained, it can output the drawn feature map of input surface with precise boundaries efficiently. The U-Net segmentation model is 
a kind of Encoder-decoder architecture with benefits of lower cost and high efficiency with great segmentation accuracy using few 
training data. The experimental results show the remarkable and applicable performance of structured surface segmentation to meet 
the metrological requirements, which can support the intelligent surface characterisation framework and for further feature 
attributes analysis and parameterisation. 
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1. Introduction  

In the era of Industry 4.0, intelligent manufacturing is rapidly 
evolving by leveraging real-time data analysis and artificial 
intelligence (AI) techniques to optimise the manufacturing 
process. As a sub-scope of manufacturing, metrology, the 
science of measurement, is also advancing towards digitalization 
and intelligence. The future development of metrology faces 
two key challenges: integrating metrology into the design 
process [1] and establishing smart data analytics systems [2]. In 
the next few decades, metrology is expected to improve the 
understanding of complex systems through digital surface 
texture analysis technologies and support decision-making 
frameworks using AI-assisted techniques. The former requires 
establishing connections between surface features and 
functionality, while the latter is anticipated to lead to the 
application of machine learning to new areas. Surface 
characterisation is a critical component of data analytical 
systems in metrology, allowing the optimisation of the 
functional performance of components and reducing costs. 
Engineering surfaces are transitioning from stochastic to 
deterministic patterns, referred to as freeform structured 
surfaces, with complex forms and structured features designed 

to meet specific functions such as good bearing properties, 
electrical contact, and optical properties [3]. The general surface 
characterization scheme for freeform structured surfaces 
comprises three main operations: form removal, denoising, and 
segmentation, as shown in Figure 1.  

 
Figure 1. Surface charaterisation sheme 
 

The initial step is form removal to remove reference form as 
large-scale components from primary surface measuments. 
Next, denoising targets small-scale components and suppresses 
high-frequency noise to obtain a scale-limited surface for feaure 
extraction. Segmentation is then performed on the scale-limited 
surface to divide the surface topography into a number of non-
intersecting regions and use a set of parameters to identify the 
individual feature attributes or relations between them [4]. The 
future development of charaterisation is integrating into the 
smart metrology system to achieve real-time data analytics and 
optimise manufacturing process which means requiring design 
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an intelligent segmenter to process different type of surfaces 
measurements.  

Traditional segmentation methods are usually based on 
computer vison techniques such as edge operators, active 
contour, watershed and level sets. While they perform well on 
different types of sufaces, but they usually involve manual 
operations for each individual input such as initial condition 
setting or parameter tuning. Inproper initial conditions will lead 
to over- or under- segmentation which implies techniqual 
background is required for users to apply these algorithms. In 
addition, they are inefficienct for multiple imags application due 
to computational complexity. Watershed segmentation is a 
commonly used method used in surface metrology [5]. Take it as 
an example, there are two ways: top-down and bottom-up 
depending on different tasks and it requires the selection of 
user-defined markers for segmentation. The main drawback of 
watershed and active contours is over-segmentation due to the 
local minimas sensitivity [6]. 

To address these issues, the ideal feature extractor should 
achieve automatic segmentation and process multiple inputs 
simultaneously for diverse surfaces without any manual 
operation. Deep learning techniques have been successfully 
applied in image processing field including segmentation task, 
with benifits of intelligence and generalisation. In this study, we 
apply the U-Net model, a well-known network for image 
semantic segmentation, conbining data angmentation and 
transfer learning techniques to perform on freeform structured 
surface using only a small amount of dataset. The experimental 
results indicate that retrained UNet model can reach high 
accuracy of segmentation and classify structured features 
simultaneously. No need for manual setting and tuning for 
model use, which implies it can function as an intelligent 
segmenter to achieve automtic segmentation for multiple inputs. 
Due to the GPU support for deep learning, compared to the 
traditional approachs, the proposed learning-based method can 
output results efficiently once the model has been trained. 
Therefore, it is also friendly to non-expert users to apply. 

2. Brief literature review of image segmentation      

This section will give a brief literature review of traditional 
used surface segmentation methods and advanced deep 
learning-based models used for image segmentation. Commonly 
used edge operators including Sobel, Roberts and Prewitt are 
useful to detect feature edges by quantifying gradient vector of 
each pixel that represent local changes in pixel-values intensity 
and they usually used before segmentation as a pre-step to 
enhance accuracy and performance [7]. Active contour models 
(ACMs) have shown better performance as represented by the 
active contour without edge model [8]. Furthermore, Chan and 
Vese introduced a new approach using level set functions to 
formulate the segmentation model treated as an energy 
minimisation objective which can be solved through solving 
PDEs [9]. Watershed transform algorithm is a robust algorithm 
based on mathematical morphology as with adaptive 
thresholding, from a threshold is too slow for dividing objects 
and gradually raised to an optimal level. Scott proposed an 
extended watershed method based on Maxwell’s theory and 
Pfaltz graph, which expands input range from areal height maps 
to true 3D mesh surfaces [5]. Construction is an operation to 
merge over-segmented regions by Wolf pruning.  

Currently, there are only a limited number of applications for 
machine learning techniques in surface metrology, however, 
due to the similarities in data structure, deep learning methods 
have high potential in surface metrology as their poweful 
capability in performing image processing tasks. From the view 
of tasks in deep learning, image segmentaion can be formulated 

as the problem of classifying elements with semantic labels 
(semantic segmentation) or partitioning of individual objects 
(instance segmentation) or both (panoptic segmentation). For 
structured engineering surfaces, patterns are structured and 
features need to be identified individually to match various 
functionalities such as optical and electrical property. Hence, 
applying semantic segmentation can not only identify boundary 
of structures but also gather information with features 
relationships. One of the first successful deep learning-based 
approaches for image segmentation was the Fully Convolutional 
Network (FCN) proposed by Long et al. in 2015 [10]. FCN uses a 
convolutional neural network (CNN) that is trained end-to-end 
to predict the segmentation mask of an input image. FCN was 
able to achieve state-of-the-art results on several benchmark 
datasets, demonstrating the potential of deep learning for 
image segmentation. Following the success of FCN, several other 
deep learning-based approaches for image segmentation were 
proposed. One most popular architecture is U-Net, proposed by 
Ronneberger et al. in 2015 for biomedical images segmentation 
application [11], which uses Encoder-decoder structure and has 
been shown to perform well on small training dataset. Mask R-
CNN is another approach proposed by He et al. in 2017 [12] as 
an extension of the Faster R-CNN of which is developed for 
instant segmentation and has achieved state-of-the-art results 
on several benchmark datasets. Additionally, DeepLab [13] is 
another family of models that use atrous convolution and a 
multi-scale feature fusion approach to combine features from 
different levels of the network. The V-Net is another classic 
model based on FCN model proposed by Milletari et al. [14] 
which is used for 3D image segmentation. Some hybrid methods 
are combining CNNs with classic computer vision approaches 
such as watershed or active contour [15] to perform different 
tasks. In this metrological application, the U-Net model was 
selected because it offers two key advantages. Firstly, it has the 
ability to attain high accuracy in pixel-level segmentation while 
still maintaining important contextual and location information. 
Secondly, it performs well even when trained on only a limited 
number of samples, which is ideal for this particular application 
as there is a scarcity of available engineering surface data. 

3. Methodology 

3.1. UNet architecture  
Originally employed for medical image segmentation, U-Net is 

a traditional neural network that has proven successful in a 
number of semantic segmentation applications. As seen in figure 
2, the fundamental architecture is a two-path encoder-decoder. 
By encoding feature channels in higher resolution layers, the 
encoder component is a path that contracts to capture the 
context information of inputs. To enable accurate localization 
from feature representations, the decoder component is a 
similar expanding path connected encoder blocks symmetrically. 
It should be noted that the skip connections technique is 
employed here to combine the output of the same-level decoder 
layer with the feature maps of each encoder layer in order to 
increase the localization accuracy. Consisting of two 33 
convolution kernals, a rectified linear unit (ReLU), and a 22 max 
pooling for downsampling but doubling the feature channels, 
contraction is a repetitive structure. Expansion is achieved by 
regular convolutions and upsampling to same dimensionality 
using transposed convolutions. For surface segmentation 
application, the inputs of model are RGB images (𝑟 × 𝑐 × 3 )  
with ground truth feature masks (𝑟 × 𝑐 × 1), and the output are 
pixel-labeled category maps. The Tversky loss 𝐿 =  1 − 𝑇𝐼 [16] 
based on Tversky Index (TI) is used here to measure the overlap 
between predictions and labels. 



  

 
Figure 2. Original UNet architecture [11] 
 

3.2. Proposed method framework    
An intelligent surface segmenter is proposed based on U-Net 

model with utilisation of data augmentation and transfer 
learning techniques. Data augmentation is used to expand 
original dataset and resize to uniform the inputs. Transfer 
learning is employed here based on pre-trained network to 
speed up the training and reduce the cost. The method 
framework is shown in figure 3 and implementation steps are 
summarised as follows: 
1) Create image datastore with original input RGB images 

converted from surface measurements. 
2) Generate ground truth labels using the image processing 

techniques for each surface. 
3) Use data augmentation techniques including cropping and 

warping transformations to obtain augmented training 
dataset containing patches and corresponding pixel-
labeled feature masks. 

4) Load pre-trained UNet network and replace the final layers 
with customised feature classes and image size. 

5) Retrain the model based on our dataset and oprimise the 
hyper-parameters to obtain best-tuned model. 

6) Test our model based on test dataset and evaluate by 
segmentation metrics. 

 

 
Figure 3. Framework of proposed UNet-based surface segmentation 
method  

4. Experiments      

4.1. Surface segmentation  
The U-Net model is constructed and trained in MATLAB 

(2022b) platform. As a result of the limited engineering samples 
of structured surfaces, the original data contains thirty-seven 
structured and freeform surface measurements featured 
various types of structures. Then split into training, validation 
and test dataset in a ratio of 60%:20%:20%. In order to expand 
dataset, data augmentation including cropping and rotating is 
carried out, resulting in expansion of each sample into 50 
patches. This leads to training dataset being expanded to 2000 
patches of size 128 × 128 × 3, along with their corresponding 
pixel-labeled masks of size 128 × 128 × 1  as figure 4 shown. 
The validation and test dataset contain 400 patch-pairs of the 
same size.  

   
Figure 4. Training patch with label mask 

The experimental results are visualised with boundary trace. 
Figure 5 shows typical cases from MEMS surface. The 
segmentation results indicate that our model can extract the 
feature boundary accurately especially for overlapped features 
and output precise pixel-level location information. Figure 6 
shows a type of freeform structured surface named ‘Simon-star’. 
As we can see, it has distortion points due to presence of noise 
and which also demonstrates the lack of robustness. Based on 
model output it is can calculate the field and feature parameters 
of surface based on location information with resolutions. 

  

  
Figure 5. U-Net segmentation performance for MEMS surfaces 

  
Figure 6. U-Net segmentation performance for ‘Simon stars’ surface 

Therefore, the results are compatible with next step of 
paraterisation. For each input, we can obtain segmentation 
result within average one second on CPU and a hundred of 
milliseconds on GPU. The specific running time depends on input 
size. No manual involved operation which indicates the model 
can support processing multiple inputs efficiently. 
 



  

4.2. Evaluation 
To quantitively assess the segmentation performance on 

surface metrology, three metrics are calculated to instuitively 
measure the quality and accuracy of our model.  Commonly used 
metrics for semantic segmentation task are Pixel Accuracy, 
Intersection-over-union (IoU) and Dice Coefficient (F1 score) 
[17] as shown in table 1 with their definitions and calculation 
formulas. First is pixel accuracy to calculate the proportion of 
pixels classified correctly of output image which is a 
straightforward evaluation which higher value means higher 
segmentation accuracy. However, it does not necessarily imply 
superior model capability even calculated high accuracy, since 
the class imbalance issue. Then IoU, also called Jaccard Index, is 
a well-known and more effective evaluation to assess model. 
Similarly, higher value means better performance. It is more 
applicable than pixel accuracy especially for the presence of 
overlapping regions. Dice Coefficient is positively correlated 
with IoU which assesses the similarity between prediction and 
truth. All these three metrics are range from 0 to 1 with larger 
values means better segmentation performance. 
Table 1. Metrics for segmentation 

Metrics Formula 

Pixel 
Accuracy 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠
 

Percetage of pixels in correct prediction 

Intersection-
Over-Union 
(IoU) 

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑢𝑛𝑖𝑜𝑛
 

The ratio of overlap to union  between 
prediction and ground truth 

Dice 
Coefficient  
(F1 score) 

2 × 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑏𝑜𝑡ℎ 
 

The ratio of double overlap area to total 
number of pixels of both images 

According to the results obtained from the test dataset, the 
proposed model demonstrates strong performance in surface 
feature extraction, as indicated by the average pixel accuracy of 
0.8542, the average intersection over union (IoU) score of 
0.6186, and the average F1 score of 0.7653, the average 
processing time is 1.4082 seconds. Therefore, the model 
achieves inteliigent segmentation for different input surfaces in 
high efficiency. In order to enhance the model's utility for future 
metrological applications, there is a need to further improve its 
accuracy, precision, and robustness. 

5. Conclusion and future work      

In conclusion, this paper applies U-Net model to perform 
freeform structured surface segmentation task. The 
experimental results show the remarkable segmentation 
performance with high accuracy about 85% on feature 
extraction. Compare to traditional segmentation methods, it can 
achieve intelligent and automatic segmentation without any 
manual operations and test phase. Additionally, the use of GPU-
supported neural network data processing allows for feature 
extraction map output within a few hundred milliseconds, 
indicating high efficiency and low cost. For future investigations, 
the model can be optimized for better performance by 
implementing model selection and increasing data diversity. To 
increase generalisation of model, general engineering surfaces 
and AM surfaces can be mixed in dataset for training and test to 
extend applicability of model. The use of conventional edge 
detection and segmentation methods can serve as a pre-
processing step to enhance the labeling quality. Moreover, to 
more accurately identify features with a particular function, the 

segmentation output can be combined with a classification task 
in the subsequent step. Furthermore, it is ideal to combine 
segmentation network with denoising network to construct an 
intelligent surface characterisation system for smart metrology 
development. 
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