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Abstract 
Machine tools are for machining a workpiece by a tool. The main components of machine tools are the frame, the power unit, the 
control and the steering. The position of the tool should be stabilized at the zero position by the control, which is typically a pure 
feedback control. The power unit realizes the movement of the workpiece. Thereby, large accelerations of the workpiece must be 
realized in order to increase the economic efficiency. The periodic movement of the workpiece respectively the power unit excites 
the entire machine tool and ultimately the tool itself resulting in a position error signal containing the frequencies from the 
movement. Since the motion pattern of the workpiece is customer knowledge, the frequencies it contains are not known in advance. 
Additionally, the frequencies change over time due to different motion patterns. However, the range in which the frequencies lie is 
known. In high-precision positioning of machine tools, there are three possibilities to reduce position errors of the tool: reduction of 
the disturbance causing the errors, optimization of the plant, which is the whole machine tool, or the control. This contribution 
focuses on the optimization of the control. By adding active disturbance rejection to the existing feedback controller for the tool, the 
influence of the disturbance on the position error of the tool is reduced. The resulting controller contains a disturbance estimator 
based on a Kalman filter. Hereby, the system, which shall be estimated, is either modelled as MIMO system or as a decoupled SISO 
system. A comparison between the SISO and MIMO realization leads to opposing requirements regarding the parameter tuning and 
the performance. However, the controller reduces the position error in both cases drastically even under the influence of sensor 
noise and mismatches between the plant and the system included in the filter. 
In summary, our approach permits us to estimate disturbances evolving from periodic movements of the workpiece and reduce their 
impact on the position error signal of the tool. This reduction translates directly into improved machine tool overall performance. 
 
Disturbance Estimation, Kalman Filter, Observability Analysis, Active Disturbance Rejection     

 

1. Introduction   

Increasing demands on the accuracy of components in 
manufacturing, increase the demand on the positioning 
accuracy of machine tools. Here, not only the design of machine 
tools and their main components- frames, power unit and 
steering- plays a major role, but especially its control in order to 
compensate for disturbances [1]. The goal of the control is to 
stabilize the zero position of the tool center point (TCP), which 
represents the contact point between the tool and the 
workpiece. For this purpose, the position of the TCP is measured 
and corrected by the change in position of the tool. Typically, 
pure feedback controllers are used as a first approach [1]. 

 The disturbances may originate, for example, in moving parts 
of the machine tool itself like the power unit and cannot be 
sufficiently damped on the way to the TCP or they may arise 
externally. Therefore, even with a perfectly decoupled machine, 
external disturbances would cause positioning inaccuracies that 
can only be compensated for by control. Depending on the 
characteristics and the origin of the disturbances, different types 
of control can be considered, which optimize the existing 
feedback control [2]. 

This paper focuses on disturbances caused by a periodically 
moving part of the machine tool itself like the power unit. This 
part moves over a certain period of time with a motion pattern, 
which is characterized by certain frequencies. After this period, 
the pattern changes and thus also the frequencies contained in 

the movement spectrum. Since the motion pattern of the 
workpiece is customer knowledge, the frequencies it contains 
are not known in advance. However, the propagation of the 
disturbance through the machine tool results in the disturbance 
arriving at the TCP damped, but containing the same frequencies 
of the motion pattern. These frequencies can now be seen in the 
position error signal of the TCP, which is given in all six degrees 
of freedom (DoF). Therefore, this signal can be used to estimate 
the  disturbance acting on the machine tool. This disturbance is 
subsequently used in a feedforward control to compensate its 
effect on the systems performance. 

The estimate of a disturbance can be calculated by a variety of 
methods. One widely used method is to set up the extended 
system dynamics so that the disturbance is now considered as a 
system state that can be calculated using observer concepts 
from classical control engineering. These include, for example, 
Luenberger observers or Kalman filters [3]. We concentrate on 
Kalman filters in this contribution, since they are by concept 
more robust to measurement and process noise as well as model 
uncertainties than Luenberger observers. 

In [4] a good overview of control methodologies for machine 
tools can be found. However, it lacks of an active disturbance 
rejection based on a periodic disturbance estimator. 

The remaining paper is structured as follows: First, section 2 
discusses in more detail the problem and the basics for solving 
it. Then, in section 3, the simulations and their results are 
presented, which are carried out to validate the concept. The 
performance of the approach is evaluated based on two criteria. 
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Finally, section 4 deals with the conclusion and further work that 
is planned. 

2. Problem Statement      

This section describes the basics needed to design a Kalman 
filter used to estimate the periodic disturbance arising due to 
moving parts of the machine tool. 
 
2.1. Modelling of the plant    

The tool of the machine tool is modelled via FEM and 
connected to additional models displaying the frames, the 
steering and the power unit. The model of the tool contains a 
high number of states. This model is reduced by balanced 
truncation, see for example [5], such that a time-continuous 
system  

�̇�𝒙 = 𝑨𝑨𝒙𝒙 + 𝑩𝑩𝑩𝑩 + 𝑬𝑬𝑬𝑬,           𝒙𝒙(𝟎𝟎) = 𝒙𝒙𝟎𝟎 
𝒚𝒚 = 𝑪𝑪𝒙𝒙 + 𝑫𝑫𝑩𝑩 

(1) 

 
with twelve states 𝒙𝒙(𝑡𝑡) ∈ ℝ𝟏𝟏𝟏𝟏 arises. The physical motivation 

behind the number of states are two states for each DoF, which 
result from the interpretation as a mechanical system 

𝑚𝑚�̈�𝜗 + 𝑘𝑘𝜗𝜗 = 𝐹𝐹 (2) 

for each DoF with some mass 𝑚𝑚, stiffness 𝑘𝑘, input force 𝐹𝐹, 
acceleration �̈�𝜗 and position 𝜗𝜗 [2]. With the input 𝑩𝑩(𝑡𝑡) ∈ ℝ𝟔𝟔 the 
position as well as the orientation of the TCP is controllable in 
six DoF. The disturbance 𝑬𝑬(𝑡𝑡) ∈ ℝ𝟔𝟔 results through a 
periodically moving part of the machine tool like the power unit. 
Lastly, the output 𝒚𝒚(𝑡𝑡) ∈ ℝ𝟔𝟔 is the position and orientation of 
the TCP measured in six DoF.  The dimensions of the dynamic 
matrix 𝑨𝑨 ∈ ℝ𝟏𝟏𝟏𝟏×𝟏𝟏𝟏𝟏, the input matrix 𝑩𝑩 ∈ ℝ𝟏𝟏𝟏𝟏×𝟔𝟔, the 
disturbance matrix 𝑬𝑬 ∈ ℝ𝟏𝟏𝟏𝟏×𝟔𝟔, the output matrix 𝑪𝑪 ∈ ℝ𝟔𝟔×𝟏𝟏𝟏𝟏 
and the feedthrough matrix 𝑫𝑫 ∈ ℝ𝟔𝟔×𝟔𝟔 are accordingly. 

If an assumption can be made about the model of the 
disturbance, the extended system dynamics can be set up 

��̇�𝒙(𝑡𝑡)
�̇�𝒛(𝒕𝒕)� = �𝑨𝑨 𝑬𝑬𝑬𝑬

𝟎𝟎 𝑴𝑴 � �
𝒙𝒙(𝒕𝒕)
𝒛𝒛(𝒕𝒕)� + �𝑩𝑩𝟎𝟎� 𝑩𝑩,         �𝒙𝒙(𝟎𝟎)

𝒛𝒛(𝟎𝟎)� = �
𝒙𝒙𝟎𝟎
𝒛𝒛𝟎𝟎� 

𝒚𝒚(𝒕𝒕) = [𝑪𝑪 𝟎𝟎] �𝒙𝒙(𝒕𝒕)
𝒛𝒛(𝒕𝒕)� + 𝑫𝑫𝑩𝑩 

(3) 

containing additional states 𝒛𝒛(𝑡𝑡) ∈ ℝ𝒏𝒏 needed for the dynamic 
description of the disturbance 𝑬𝑬. Its dynamics is given by the 
dynamic matrix 𝑴𝑴 ∈ ℝ𝒏𝒏×𝒏𝒏, which is determined later. Hereby, 
the dimension 𝑛𝑛 depends on the characteristics of the 
disturbance 𝑬𝑬. The matrix 𝑬𝑬 ∈ ℝ𝟔𝟔×𝒏𝒏 is to be defined and selects 
the states 𝒛𝒛 describing the disturbance 𝑬𝑬. 
 
2.2. Modelling of the disturbance   

The disturbance is modelled as a multisine due to the basics of 
fourier transformation that every periodical signal can be 
displayed as an infinite sum of sine functions. The state-space 
model of a representative sinusoidal disturbance model with 
frequency 𝜔𝜔𝑖𝑖 is given by 

𝒛𝒛�̇�𝒊(𝒕𝒕) = 𝑴𝑴𝒊𝒊𝒛𝒛𝒊𝒊(𝒕𝒕) ∶= � 0 1
−𝜔𝜔𝑖𝑖

2 0� 𝒛𝒛𝒊𝒊(𝒕𝒕), 

𝒛𝒛𝒊𝒊(0) = �
𝑎𝑎𝑖𝑖𝑠𝑠𝑠𝑠𝑛𝑛(𝜑𝜑𝑖𝑖)
𝑎𝑎𝑖𝑖𝜔𝜔𝑖𝑖𝑐𝑐𝑐𝑐𝑠𝑠(𝜑𝜑𝑖𝑖)

�, 
(4) 

where the amplitude 𝑎𝑎𝑖𝑖 and the phase shift 𝜑𝜑𝑖𝑖 determine the 
initial condition. A certain number of state-spaces of this form is 
added such that the disturbance 

𝑬𝑬(𝒕𝒕) = 𝑬𝑬𝒛𝒛(𝒕𝒕) ∶= �𝒛𝒛𝟏𝟏𝒊𝒊+𝟏𝟏(𝒕𝒕)

𝒏𝒏
𝟏𝟏−𝟏𝟏

𝒊𝒊=𝟎𝟎

 
(5) 

is generated approximately. Only for 𝑛𝑛 → ∞ every periodic 
signal could be generated exactly. The matrix 𝑴𝑴 is a block 
diagonal matrix, with the matrices 𝑴𝑴𝒊𝒊 on the diagonal. 

The assumption is made that the disturbance acts as an 
additional input disturbance. Therefore, it enters the system 
through the input matrix and the equality 𝑬𝑬 = 𝑩𝑩 in (1) holds. 

 
Figure 1. Scheme of the Kalman filter. The prediction step uses the 
control input as well as the result of the previous correction step. In the 
correction step, the current measurement and the result of the prediction 
step is used to estimate the states. 

 
Figure 2. Overall control structure. The system has as Input the control 
output consisting of the feedback control and the feedforward control 
generated in the Kalman filter. Additionally, the disturbance enters the 
system as input disturbance. 

2.3. Kalman Filter    
A Kalman filer is an estimator observing not measurable states 

of a system while reducing measurement noise for measurable 
states. For implementation the system is discretized with 
respect to time with a sample rate of 2 kHz. Hereby, the time-
discrete systems  

�𝒙𝒙
�𝒌𝒌+𝟏𝟏
𝒛𝒛�𝒌𝒌+𝟏𝟏

� = �𝑰𝑰 + 𝑨𝑨�ℎ 𝑩𝑩�𝑬𝑬ℎ
𝟎𝟎 𝑰𝑰 + 𝑴𝑴ℎ

� �𝒙𝒙
�𝒌𝒌
𝒛𝒛�𝒌𝒌
� + �𝑩𝑩�ℎ

𝟎𝟎
�𝑩𝑩𝒌𝒌 + 𝒗𝒗𝒌𝒌 

= 𝑨𝑨�𝒙𝒙�𝑘𝑘 + 𝑩𝑩�𝑩𝑩𝒌𝒌 + 𝒗𝒗𝒌𝒌 
𝒚𝒚�𝒌𝒌 = [𝑪𝑪�ℎ 𝟎𝟎] �𝒙𝒙

�𝒌𝒌
𝒛𝒛�𝒌𝒌
� + 𝑫𝑫�ℎ𝑩𝑩𝒌𝒌 + 𝒘𝒘𝒌𝒌 

= 𝑪𝑪�𝒙𝒙�𝑘𝑘 + 𝑫𝑫�𝑩𝑩𝒌𝒌 + 𝒘𝒘𝒌𝒌 

(6) 

generated from (3) and (4) should be observed. The bar denotes 
that the the model in the Kalman filter may vary from the actual 
model due to modelling uncertainties. However, the matrices 
belonging to the model of the disturbance are already an 
assumption. Hereby, ℎ = 0.5 ms  is the sample time, 𝒙𝒙�𝒌𝒌 =
𝒙𝒙�(𝑘𝑘ℎ) the state at time 𝑡𝑡 = 𝑘𝑘ℎ, 𝒗𝒗𝒌𝒌 is the process noise and 𝒘𝒘𝒌𝒌  
is the measurement noise. The noise has to be uniformly 
distributed. 

The concept of the Kalman filter includes two steps: the 
prediction and the correction step. 

The prediction step estimates the states in the next time step 
based on the system dynamics. The calculation rule 

𝒙𝒙��𝑘𝑘+1|𝑘𝑘 = 𝐀𝐀�𝒙𝒙��𝑘𝑘|𝑘𝑘 + 𝑩𝑩�𝑩𝑩𝒌𝒌 
𝑷𝑷𝑘𝑘+1|𝑘𝑘 = 𝑨𝑨�𝑷𝑷𝒌𝒌|𝒌𝒌𝑨𝑨�T + 𝑸𝑸 

(7) 

includes the estimated states denoted by the hat. The first  index 
describes for which time step the estimation is calculated while 

Prediction

Correction

Kalman Filter

Delay

System

Kalman Filter

Control



  
the second index denotes the time step at which the estimation 
is performed. Hence, these calculations determine the states at 
the time step 𝑡𝑡 = (𝑘𝑘 + 1)ℎ using the data from the time step 
𝑡𝑡 = 𝑘𝑘ℎ. The covariance matrix 𝑷𝑷 displays the certainty for the 
prediction. Its initial condition is a design parameter, which is 
automatically chosen by Simulink. The matrix 𝑸𝑸 describes the 
covariance matrix of the process noise. 
In the correction step, the prediction is corrected by a 
measurement. Therefore, 

𝑲𝑲𝒌𝒌+𝟏𝟏 = 𝑷𝑷𝒌𝒌+𝟏𝟏|𝒌𝒌𝑪𝑪�𝑻𝑻�𝑪𝑪�𝑷𝑷𝒌𝒌+𝟏𝟏|𝒌𝒌𝑪𝑪�𝑻𝑻 + 𝑹𝑹�−1 
𝒙𝒙��𝒌𝒌+𝟏𝟏 = 𝒙𝒙��𝒌𝒌+𝟏𝟏|𝒌𝒌 + 𝑲𝑲𝒌𝒌�𝒚𝒚𝒌𝒌 − 𝑪𝑪�𝒌𝒌𝒙𝒙��𝒍𝒍+𝟏𝟏|𝒌𝒌� 
𝑷𝑷𝒌𝒌+𝟏𝟏 = �𝑰𝑰 − 𝑲𝑲𝒌𝒌+𝟏𝟏𝑪𝑪��𝑷𝑷𝒌𝒌+𝟏𝟏|𝒌𝒌. 

(8) 

Hereby, 𝑲𝑲𝒌𝒌+𝟏𝟏 is the so called Kalman gain and the matrix 𝑹𝑹 is 
the covariance matrix of the measurement noise. The block 
diagram in Figure 1 shows the structure of the Kalman Filter. 
The representation of the Kalman filter is valid for SISO as well 
as MIMO systems.  
 
2.4. Control Structure    

The input 𝑩𝑩𝒌𝒌 = 𝑩𝑩𝒄𝒄,𝒌𝒌 + 𝑩𝑩𝑬𝑬,𝒌𝒌 contains two parts: the feedback 
and the feedforward control. The feedback control 𝑩𝑩𝒄𝒄,𝒌𝒌 is 
assumed  to be a PID-controller combined with a decoupling 
matrix. However the methodology is independent of the type of 
controller. The decoupling is based on a frequency approach 
(rigid body decoupling) and works well for a certain frequency 
range, in which the system behaves as a rigid body. Besides this 
range, the system acts as a flexible body and is therefore not 
necessarily decoupled. However, in the relevant frequency 
range for the considered evaluations in this contribution, this 
assumption is valid. 
The feedforward control 𝑩𝑩𝑬𝑬,𝒌𝒌 = −[𝟎𝟎 𝑬𝑬]𝒙𝒙�� 𝒌𝒌 uses the results 
from the Kalman filter and contains the estimated states 
corresponding to the disturbance. It can be activated and 
deactivated to investigate the impact of using this control. 
The overall control structure is displayed in Figure 2. 

3. Simulations      

The plant used  in the simulations is the one obtained from 
balanced truncation, see (1).  The model in the Kalman filter 
differs from this one such that the influence of model 
uncertainties can be observed. Two different approaches are 
considered. In both cases the feedback control is tuned such that 
the bandwidth is around 150Hz and the sample time is 20kHz. 
Amplitude and phase of the disturbance are randomly 
generated with 15 fixed frequencies between 18-100Hz. The 
pattern changes after three seconds. Between 3 and 3.1 seconds 
the first motion pattern is ramped down. Starting at 3.1 seconds 
until 3.2 seconds the second motion pattern is ramped up. 
Afterwards the second motion pattern is active. Hence, the 
influence of changing motion patterns and the convergence of 
the Kalman filter can be investigated. The results are 
transferable to lower sample rates and bandwidths, if the 
disturbance is more low-frequent. 
 
3.1. SISO    

First, it is assumed that the decoupling of the system works 
well, so that there are six decoupled SISO systems, each with 
system and input matrix  

𝑨𝑨�𝒊𝒊 = �
0 1

−
𝑘𝑘𝑖𝑖
𝑚𝑚𝑖𝑖

0� , 𝑩𝑩�𝒊𝒊 = �
0
1
𝑚𝑚𝑖𝑖

� , 𝑪𝑪�𝒊𝒊 = [1 0],

𝑫𝑫�𝒊𝒊 = 0 

(9) 

with some mass 𝑚𝑚𝑖𝑖 and some stiffness 𝑘𝑘𝑖𝑖. 

 For each of these systems a separate SISO Kalman filter is now 
designed using matrices (9) observing the disturbance in one 
direction. For the disturbance model in the Kalman Filter three 
different frequencies are incorporated, namely 10Hz , 50Hz  and 
100Hz. Hence, the matrix 𝑄𝑄, see (7) has dimension 8 × 8 and is 
chosen as a diagonal matrix. The matrix 𝑅𝑅 is a scalar. For the 
force directions the matrices are all the same, as well as for the 
torque directions. The covariance matrices are tuned by hand. 
Therefore, for each, the force axes and for the torque axes, nine 
degrees of freedom are available and for the whole system 
eighteen. 

The results are displayed in Figure 3 for a certain, hand-tuned 
set of design parameters. On the left side of the figure are the 
errors between the position of the TCP and the desired position, 
which is zero. Only the errors of the translational directions are 
displayed, but the rotational directions look similar. In grey is the 
signal, if the feedforward control is not activated and therefore 
only feedback compensation of the disturbance is incorporated. 
In dark blue are the signals, if the feedforward control is active. 
Hence, the feedforward control can reduce the error signal 
significantly. The change of the motion pattern does not change 
this statement.  On the right side of Figure 3 are the real (dark 
blue) as well as the estimated disturbances (light blue) in 
translational directions displayed. The disturbance is estimated 
correctly independent of the change of the motion pattern. The 
convergence of the Kalman Filter is therefore fast enough to 
estimate changing patterns. In Figure 4 are the fast Fourier-
transformed (FFT) error signals displayed. In grey is again the 
signal if the feedforward control is passive, while in dark blue it 
is active. The damping of the incorporated frequencies works 
especially well, but also frequencies nearby are sufficiently 
damped. Here, the rotational signals are neglected, too. 

 
3.2. MIMO    

In the other case, the MIMO system is used, such that  
𝑨𝑨� = 𝑨𝑨, 𝑩𝑩� = 𝑩𝑩, 𝑪𝑪� = 𝑪𝑪, 𝑫𝑫� = 𝑫𝑫 (10) 

holds.Hereby, also three different frequencies are contained 
in the disturbance. Therefore, the matrix 𝑄𝑄 has dimension 
48 × 48 and 𝑅𝑅 6 × 6 leading to 54 degrees of freedom. The 
matrices are also tuned by hand. 

The performance looks similar as in the SISO-case in Figure 3. 
Therefore, an additional figure is not displayed. 
 
3.3.Performance Criteria   

 Two difference criteria are calculated to evaluate the 
performance of the Kalman Filters. One is the maximum error 
between the position of the TCP and the desired position 

𝑚𝑚𝑎𝑎𝑚𝑚
𝜏𝜏∈[0,𝑇𝑇]

𝑒𝑒(𝜏𝜏), (11) 

 while the other one is the root-mean-square error (RMSE) 
defined as  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
�∫ 𝑒𝑒(𝜏𝜏)𝑑𝑑𝜏𝜏𝑇𝑇

0

𝑇𝑇 . 
(122) 

The RMSE is incorporated to take the periodical characteristics 
of the signal into account. The results for the SISO- as well as for 
the MIMO-case are displayed in Table 1. Hereby, only the 
improvement is shown. The improvement factor is calculated 
with respect to the szenario without the feedforward control. 
The SISO-Case shows higher improvements than the MIMO-
case. One reason for that are the lower number of parameters 
that need to be tuned in the covariance matrices. However, both 
scenarios show the potential of the methodology presented in 
this contribution. 



  
4. Conclusion and future work      

In this contribution a methodology was presented to estimate a 
periodic disturbance measured in the position error of the TCP 
of a machine tool using a Kalman filter. 
First, the problem statement was explained. This included the 
modelling of the plant. By balanced truncation, a physically 
motivated system with twelve states is generated from a FEM-
model. This is supplemented by a model of the input disturbance 
so that the extended system dynamics result. The Kalman filter 
uses the  

 

 
Figure 4. FFT from the output error. In grey is the amplitude of the output 
error resulting without feedforward control displayed, while the dark 
blue signal shows the case of active feedforward control. The frequencies 
contained in the Kalman filter are damped the most, but also the other 
frequencies are damped. 

temporally discretized model as model for the prediction step 
either as six SISO-models or as one MIMO- model. Measurement 
of the position of the TCP are used to correct the prediction. The 
feedback control used is a PID-controller that decouples the 
system in a certain frequency band and controls the system with 

a bandwidth of 150 Hz. In addition, the control contains a 
feedforward control based on the signals from the Kalman filter. 
By using the feedforward control, the maximum absolute 
position error as well as the RMSE of the TCP can be drastically 
minimized. The improvement potential is greater than 80% in all 
directions for the SISO- as well as the MIMO-case. Thus, the 
methodology presented here offers great potential to increase 
the positioning accuracy of the TCP and hence improve the 
overall machine tool performance. In future work, the findings 
shall be confirmed by measurements. 

Table 1 Improvement in performance criteria for SISO- and MIMO-case. 
 

Case Direction Improvement max. 
error in % 

Improvement 
RMSE in % 

SISO x 88.1 88.6 
y 85.7 86.0 
z 86.3 87.3 
rx 85.5 87.0 
ry 83.3 85.5 
rz 84.8 86.1 

MIMO x 83.0 83.4 
y 84.0 83.7 
z 84.2 85.2 
rx 83.6 82.9 
ry 81.2 82.1 
rz 80.3 81.5 
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Figure 3. Output error, disturbance and estimation of the disturbance with and without feedforward control. On the left side are the translational 
output errors displayed with passive (grey) and active (dark blue) feedforward control. The feedforward control leads to a reduction of the error 
signal. On the right side of the figure is the real disturbance (dark blue) as well as the estimated disturbance (light blue) displayed. The disturbance 
is estimated correctly by the Kalman filter. 
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