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Abstract 
Optical coordinate measurement techniques are growing in popularity due to their high surface coverage and fast data acquisition 
time, and photogrammetry in particular has the further advantage of inexpensive component requirements. Although data 
acquisition is fast, data processing speeds can be relatively slow, particularly when high point cloud densities are required, such as 
for metrology applications. Reconstructed point clouds often also contain superfluous points due to feature matching in the 
background of images. In this paper, we present a method for exploiting the a-priori knowledge of a measurement system to 
efficiently and autonomously segment the object of interest from the background within a photogrammetric reconstruction pipeline. 
We show that using this technique leads to reduced reconstruction times and reduced background feature matching, while 
maintaining the quality and point density of the point cloud. We show a time reduction of up to 71% and a reduction in background 
points of up to 77%. The time required to segment the images is also shown to be lower than the time saved during feature matching 
leading to an overall more efficient measurement pipeline, with potential further gains with a more optimised implementation of the 
techniques presented. 
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1. Introduction 

Close-range photogrammetry is a coordinate metrology 
technique that reconstructs an object from a series of 
overlapping photographic images of that object [1]. By 
extracting features which are invariant under affine 
transformations from each image, such as through the scale 
invariant feature transform (SIFT) algorithm [2], surface features 
can be matched between images and then triangulated to 
produce a sparse point cloud of an object’s surface. This sparse 
point cloud is refined through a process of bundle adjustment 
[3] which iteratively seeks to minimise the reprojection error of 
the camera network; optionally the sparse point cloud can then 
be ‘densified’ to create a dense point cloud using an algorithm 
such as semi-global matching [4]. The photogrammetric pipeline 
as described above has one major disadvantage over competing 
optical coordinate measuring techniques, mainly fringe 
projection, in that it can be relatively slow. Although exact times 
depend on quality settings and the number and resolution of the 
images used, typical sparse reconstructions can take on the 
order of minutes and dense reconstruction can take on the order 
of hours. 

 
1.1. Previous work 
There are two main approaches to reducing data processing 
time for photogrammetry. The first is to reduce the number of 
images required for the reconstruction. Zhang et al. [5] and 
Eastwood et al. [6] attempted to reduce the number of images 
needed to reconstruct an object while maintaining 
reconstruction accuracy. This is achieved by performing a global 
minimisation procedure on the computer aided design (CAD) 
data of the object to be measured. They show that using 
relatively few optimised imaging locations can produce  higher 

quality reconstruction results than using many more 
unoptimised images. 

The other approach  to reducing overall processing time is to 
improve the per-image processing time. Removing the 
background from an image, and as such reducing the number of 
points detected and matched, has been used as a method for 
speeding up reconstruction and reducing superfluous data. 
Most current approaches to background removal rely on manual 
masking of images by the user [7,8]. If the background is static 
relative to the camera, such as in measurement systems using a 
rotation stage, this can be exploited to remove the background 
in an automated way (see [9]). Furthermore, as static 
background feature matches can cause the reconstruction 
algorithms to fail, the removal of these features has the 
additional benefit of making reconstruction more stable. 
Because of these benefits, commercial photogrammetry 
software packages can accept masks as part of their 
reconstruction algorithms. OpenMVG [10], an open-source 
structure-from-motion library, can use binary masks to 
determine which features are included in the reconstruction. 
However, generating these masks is left entirely up to the user. 
Agisoft Metashape [11], a commercial photogrammetry 
package, can generate image masks but requires the user to 
manually outline the object in a sub-set of the images used for 
reconstruction. 

In this paper, we first present an algorithm for autonomously 
segmenting the object from the background of an image taken 
by a Taraz Metrology P2 photogrammetry system [12]. We show 
that when these segmented images are used for reconstruction, 
the overall processing time is significantly reduced. 
Furthermore, we show that removing the background has the 
added benefit of reducing unwanted background matches, while 
maintaining the point density on the object’s surface. We use 
the measurement system to acquire images of two artefacts, 
then sparse photogrammetric reconstruction is performed on 
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the data, both with and without background removal. The two 
sets of data are then compared. 

2. Methodology 

Figure 1(a) shows the measurement system used in this paper. 
The system has five degrees of freedom of motion with a pair of 
stereo machine vision cameras for data capture. In a typical scan 
sixty pairs of images will be taken in an equally spaced ring 
around the object that is to be measured. 

 

 
 

Figure 1. Taraz Metrology P2 photogrammetry system: (a) the 
measurement system, (b) an example image from a high angle, (c) an 

example image from a low angle. 

 
As can be seen in Figures 1(b) and 1(c), the background of the 

image contains no closed contours and the object to be 
measured is fully contained in the cameras’ field of view. Our 
method for background removal assumes that this will be the 
case for all objects and all imaging positions. Therefore, if we can 
detect the largest closed convex contour in the image, this 
contour will describe the outer bounds of the object within the 
image. The algorithm consists of five steps: bilateral filtering, 
Canny edge detection, Gaussian filtering, contour extraction and 
selection, and boundary dilation. 

First, a bilateral filter [13] is applied to the image. A bilateral 
filter is an edge-preserving smoothing filter and is used here to 
smooth high spatial frequency texture information from the 
image which improves the performance of edge detection in the 
next stage of the algorithm. A bilateral filter combines a spatial 
filter with an intensity filter, both are Gaussian kernels which are 
convolved over the image. The spatial filter acts as a normal 
Gaussian blur and the intensity filter (called the range filter) acts 
over the space of pixel values. The combined filter is formulated 
as, 

𝐼𝑓(𝑥) =  
1

𝑊𝑝
∑ [𝐼(𝑥𝑖) 𝐺𝑟(|𝐼(𝑥𝑖) − 𝐼(𝑥)|) 𝐺𝑠(|𝑥𝑖 − 𝑥|)]

𝑥𝑖∈𝐾

, (1) 

where 𝐼𝑓 is the filtered image, 𝐼 is the original image, 𝑥 is the 

current pixel coordinate, 𝐾 is the sliding kernel window centred 
at 𝑥 such that 𝑥𝑖 is another pixel, 𝐺𝑟 is the range kernel with 
standard deviation 𝜎𝑟, 𝐺𝑠 is the spatial kernel with standard 
deviation  𝜎𝑠 and 𝑊𝑝 is a normalisation term given by,  

𝑊𝑝 = ∑ [𝐺𝑟(|𝐼(𝑥𝑖) − 𝐼(𝑥)|) 𝐺𝑠(|𝑥𝑖 − 𝑥|)]

𝑥𝑖∈𝐾

.         (2) 

By combining the range and spatial filters, pixels which are 
close together but have very different values, such as across an 
edge in an image, are weighted much less than pixels on the 
same side of the edge which will be closer in value. Figure 2 
shows the performance of an edge detection algorithm on an 
example image with and without bilateral filtering. 

 

 
 

Figure 2. Canny edge detection with and without bilateral filtering: 
(a) original image, (b) edge detection on original image, (c) filtered 

image, (d) edge detection on filtered image. 

 
 As can be seen in Figure 2(d), the bilateral filter improves the 

edge selection, reducing the number of minor edges detected in 
the texture of the rotation stage and object, which can be seen 
in Figure 2(b). 

Next, edges are extracted using a Canny edge detection 
algorithm [14]. The Canny edge detection algorithm takes the 
filtered image as input and uses the Sobel operator [15] to 
detect the image gradients at each pixel, where areas of high 
gradient are considered edges. These edges are then thinned 
using non-maximum suppression, a process of selecting only the 
maximum gradient values in the direction of that gradient at 
each pixel. Finally, a process of hysteresis selection is used to 
further refine the edge selection.  The hysteresis selection takes 
two parameters which are thresholds used to determine 
whether a pixel lies on an edge. If a pixel is above the upper 
threshold, it is considered an edge, if it is above the lower 
threshold and neighbours other edge pixels, it is considered an 
edge, otherwise it is not considered an edge. Usually, these 
parameters are set manually on a per image basis; however, to 
ensure the process is autonomous these parameters are 
selected based on the current image by, 

 



  

 

𝑡𝑙𝑜𝑤𝑒𝑟 = 𝑚𝑎𝑥([0, (1 − 0.33) ⋅ 𝐼(𝑥)̃ ]),             (3) 

𝑡𝑢𝑝𝑝𝑒𝑟 = 𝑚𝑖𝑛([255, (1 + 0.33) ⋅ 𝐼(𝑥)̃ ]),        (4) 

where 𝐼(𝑥)̃  is the median grayscale pixel intensity value over the 
image, and 𝑡𝑙𝑜𝑤𝑒𝑟  and 𝑡𝑢𝑝𝑝𝑒𝑟are the upper and lower thresholds 

for edge selection. Distributing the threshold values about the 
median pixel intensity, as in Equations 3 and 4, was evaluated 
through testing on a range of artefacts and was found to 
perform well. 

 Once the edges have been extracted, a smoothing kernel is 
convolved over the image to connect any discontinuities in the 
extracted edges. 

From the edges, continuous contours are extracted using a 
pixel following algorithm. These contours are sorted by area and 
the convex contour with the largest area is selected to be used 
in the background masking.  As a final step, the boundary of this 
contour is dilated; this ensures the entire object is included in 
the mask, as the shadow at the base of the object can sometimes 
lead to the contour being slightly misplaced. This dilated contour 
is then used to segment the object from the background. Figure 
3 shows the entire pipeline applied to an example artefact. 

 

 
 

Figure 3. Background removal pipeline stages applied to scan data of 
a 3D printed polymer artefact: (a) original image, (b) bilateral filter, (c) 

edge detection, (d) contour extraction, (e) contour selection, (f) dilation 
and masking . 

 

3. Results 

The proposed background removal pipeline was tested for two 
different artefacts, which are shown in Figure 4. 
 

 
 

Figure 4. Test artefacts: (a) artefact 1 manufactured by polymer 
powder bed fusion (PBF), (b) artefact 2 manufactured from Ti64 using 

metal PBF. 
 

 In both cases, 60 stereo pairs of images were captured on a 
ring of equally spaced points around each object leading to a 
total of 120 images. Each image was segmented using the 
proposed method which was implemented using the OpenCV 
library [16] for Python 3.7, this took 10 s per image. These 
images were then reconstructed with OpenMVG, using a 
sequential reconstruction method [10].   

Figure 5 shows the reconstruction results for artefact 1. 
 

 
 

Figure 5. Open MVG reconstruction results on 120  images of artefact 
1: (a) example scan image, (b) example masked image, (c) normal 

sparse reconstruction, (d) sparse reconstruction with masking.  

 
As can be seen in Figure 5, artefact 1 was reconstructed well 

in both cases with approximately 130,000 surface points being 
reconstructed using both techniques. However, the normal 
reconstruction shown in Figure 5(c) also reconstructed 110,198 
background points. In comparison, using the proposed method, 
the reconstruction shown in Figure 5(d) reconstructed only 5465 
background points. This led to a decrease in processing time 
from 2353 s to 1130 s, a reduction in time of 52%.  

 

  
 

Figure 6. Open MVG reconstruction results on 120 images of artefact 
2: (a) example scan image, (b) example masked image, (c) normal 

sparse reconstruction, (d) sparse reconstruction with masking.  
 

To provide further evidence of the effectiveness of the 
proposed approach, the same test was conducted on a second 
artefact as shown in Figure 6. Once again, the reconstruction of 
the object was similar in both methods, but the number of 
background matches was significantly decreased when masking 
was used. In this case, when using conventional reconstruction, 
there were 55,923 object points and 340,639 background points, 
compared to 54,041 object points and 3,085 background points 
when the proposed image masking method is utilised. This over 
100 times reduction in background points leads to a reduction in 
reconstruction time from 11,524 s to 3302 s, which is a reduction 
of 71%.  



  

 

4. Discussion 

It is shown in Figures 5 and 6 that the quality of the sparse 
reconstruction is maintained when the background removal is 
utilised. In both cases the masked reconstructions are within 3% 
of the object points, as compared to using the un-masked 
images. 

When reconstructing smaller objects, such as artefact 2, it was 
found that the vast majority of the reconstructed points are 
background points, which are not useful to the measurement of 
the object. In the specific case of artefact 2 only 18% of the 
reconstructed points were related to the measured object. This 
explains the even greater time reduction when compared to 
artefact 1 in which 54% of the reconstructed points were on the 
object surface. 

When using the masked images, the reconstruction of artefact 
1 had 95.9% object points and the reconstruction of artefact 2 
had 94.6% object points. This result is clearly a significant 
improvement over the un-masked reconstructions. The reason 
that there are still some background points is because of the 
dilation of the contour used to mask the object. However, this 
leads to better reconstruction results than the cases when the 
un-dilated boundary would remove some of the object pixels 
along with the background. Furthermore, there are some 
erroneous ‘floating’ points both with and without the masking 
process. However, these points will be filtered out before 
densification by setting a maximum reprojection error threshold 
for a point to be included. 

There is potential to further reduce the number of background 
points carried forward to reconstruction by refining the 
background removal. For example, Figure 5(b) shows how, if a 
part has concave features, a large amount of background can fail 
to be masked out. However, during testing, it was found that 
attempts to increase the amount of background pixels removed 
lead to the algorithm becoming more unstable and frequently 
removing object pixels on more complex objects. Therefore, in 
this paper we chose to include more background pixels to ensure 
all object pixels were included for complex parts.  

The current Python implementation of the algorithm, when 
run on an Intel Xeon W-2723 CPU, takes around 10 s per image 
of processing time to complete the image segmentation. It is 
likely this time can be significantly reduced with a more efficient 
implementation using optimised code and more powerful and 
effective hardware, such as GPU acceleration. However, with 
the current implementation, the sum of the masking time and 
reconstruction time is still lower that the time taken for 
reconstruction using the un-masked images. 

5. Conclusions 

We have presented a method to robustly and autonomously 
remove the background from images. Our method exploits the 
knowledge that there are no large, closed contours in the 
background of images captured by the measurement system (in 
this case a Taraz Metrology P2). Therefore, the largest closed 
contour in the image will define the outline of the object which 
is being measured.  

We show that using these masked images in sparse 
photogrammetric reconstruction can lead to up to 71% time 
savings and the point density on the object surface is 
maintained. Furthermore, we show that the number of 
superfluous background matches is significantly reduced with 
around 95% of reconstructed points constituting the object 
surface in both case studies presented.  

6. Future work 

Immediate future work is to determine the impact of the 
proposed approach on dense reconstruction through 
comparison to CMM data. This is important to verify that 
masking the background does not lead to form or dimensional 
errors in the final measurement result. 
Further work has begun on a more optimised version of the 
algorithm implemented in efficient Rust code. Early results show 
this is likely to lead to significantly reduced processing time at 
the image masking stage, compared to the Python 
implementation used to generate the results shown in this 
paper. 
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