Cutting force prediction in micro-milling considering the cutting edge micro-geometry

E. Uhlmann1,2, J. Polte1, H.M. Wiesner1, Y. Kuche2, M. Polte1,2

1Fraunhofer Institute for Production Systems and Design Technology IPK, Germany
2Institute for Machine Tools and Factory Management IWf, Technische Universität Berlin, Germany
maximilian.wiesner@ipk.fraunhofer.de

Abstract
The micro-milling process is used for a wide range of materials and enables the manufacturing of complex geometries with micro-features. One important factor for the tool life is the cutting force \(F_c \), which depends on the applied technology, process parameters and cutting edge micro-geometry. High cutting forces \(F_c \) can lead to tool breakage in the transition between the shank and the cutting part of cemented carbide end mills. The prediction of cutting forces \(F_c \) in micro-milling processes through cutting force models could potentially decrease the hazard of tool breakage. By including the cutting edge radius \(r_f \) into the prediction model, additional correction factors can be avoided. Therefore, further knowledge about the applicability of those models for the micro-milling process with chip thickness \(h < 0.01 \) mm is needed.

In this investigation, the cutting force model of Kotschenreuther [1], which takes the cutting edge radius \(r_f \) into account, is used for the cutting force prediction in micro-milling. In order to validate this model, an innovative lead free copper alloy CuZn21Si3P is machined. Cemented carbide micro-milling tools with tool diameter \(D = 1 \) mm were used. The manufacturing of different cutting edge radii \(r_f \) was realised with the immersed tumbling process. During milling experiments with a five-axis high precision machine tool the cutting forces \(F_c \) were measured. Cutting forces in a range of \(6 \) N ≤ \(F_c \) ≤ 26 N were detected. The results show good correlations between the predicted and experimental determined cutting forces \(F_c \). Furthermore, the measured cutting edge radii \(r_f \) show a high influence on the deviation of the measured and predicted cutting forces \(F_c \).

Keywords: micro-milling, innovative micro-geometry, cutting force

1. Introduction
Micro-machining has become increasingly important in recent years, because of the growing demand for components utilizing complex micro-features. In industrial applications, the tool life is one of the key factors for cost-effective micro-machining. This property is influenced by the cutting force \(F_c \), which depends on the technology, the process parameters and the tool geometry. Especially the micro-geometry of the tool edge affects the cutting forces \(F_c \) and is influenced by the proceeding tool wear during the process. Increasing cutting forces \(F_c \) usually lead to tool breakage in transition between the shank and the cutting part of carbide milling tools. Cutting force models according to Kronenberg [2] and Kienzle [3] for predicting the cutting forces \(F_c \) are established in case of conventional machining [4]. The prediction model of Kienzle was extended by Kotschenreuther [4] who reduced all correction factors k on the cutting edge radius \(r_f \). The prediction model is shown in formula 1. The model is influenced by the specific cutting force \(k_c \), the cutting width \(b \), the chip thickness \(h \), the slope value of specific cutting force \(m_c \) and the cutting edge radius \(r_f \). The cutting edge radius \(r_f \) could be determined as the most important influencing factor. The developed model was validated for chip thickness in a range of \(1 \) µm ≤ \(h \) ≤ 100 µm by turning experiments.

\[
F_{c_{\text{exp}}} = k_c b h^m_{c_{14}} \left(\frac{n m_{c_{14}}}{0.0008442 \text{mm}} \right)
\]

Within the following chapters, the detailed methodological procedure for the validation of the Kotschenreuther [1] prediction model of will be explained. Micro-milling experiments with interrupted cutting for a chip thickness \(h < 0.01 \) mm will be presented and evaluated.

2. Experimental methodology
In order to generate extensive knowledge about the influence of the tool micro-geometry on the cutting force \(F_c \), it is necessary to understand the cutting process. First, the cutting edge micro-geometries of the prepared tools are extensively analysed in a test-preparatory step. After the practical experiment, the cutting forces \(F_c \) were analysed. This study includes two series of experiments, which are repeated three times. The influence of wear can be eliminated because of the possibility to use a new tool every experimental setting. The first series of experiments includes a variation of the process parameters feed per tooth \(f_z \), depth of cut \(a_p \) and spindle speed \(n \). In a second series of experiments, only the process parameter feed per tooth \(f_z \) has been varied. Thereby, only the mean chip thickness \(h \) changes. As a starting point for the parameter variation, the process parameters recommended by the manufacturer of the tools were used. The cutting force \(F_c \) were measured with the piezoelectric dynamometer Kistler type Z21317AT from Kistler Instrument AG, Winterthur, Switzerland. Solid carbide milling tools from ZECHA Hartmetall Werkzeugfabrikation GmbH, Königsbach-Stein, Germany, were used. To achieve different cutting edge micro-geometries, tools with identical macro-geometry were prepared differently. The tools are prepared by coating, lapping and laser preparation, as shown in figure 1. Prior to the experiments, the cutting edge radii \(r_f \) of the major and minor cutting edge, the chipping of the major and minor cutting edge \(R_c \) and the surface characteristics of the
flutes are measured. It was possible to achieve significantly different tool micro-geometries. A preparation of the uncoated milling tools leads to a slight increase in the cutting edge radii r_b and to a reduction in chipping of the cutting edge R_c. The workpiece material was a lead-free heavy-duty special brass CuZn21SiP of the company WIELAND-WERKE AG, Ulm, Germany.

The experiments were carried out on the five-axis high precision machine tool PFM 4024-5D from the company PRIMACON GmbH, Peißenberg, Germany. Within the experiments, slot milling over a length $l = 10$ mm was used. For the evaluation of the cutting forces F_c, the piezoelectric dynamometer was applied. The results were analysed with the software MATLAB and a correspondingly developed program for the calculation of real cutting forces F_c. Subsequently, the determined cutting forces F_c in the cartesian coordinate system were converted via the transformation matrix in a polar coordinate system related to the tool. The evaluation of the cutting forces F_c has shown that the variation of cutting edge micro-geometry has significantly affects, as is shown in figure 2. In addition to the analysis of the cutting forces F_c, Kienzle’s linear relationship between the cutting force F_c and the depth of cut a_p in the area of micro-machining could be demonstrated.

Due to the minimised scope of the experiments and the nonlinear influence of the chip thickness h, only the main value of the specific cutting force $k_{0.5.1}$ can be determined. The quotient of the cutting force F_c and the chip cross section A is plotted over the chip thickness h in a double logarithmic coordinate system to calculate this value.

Figure 3 shows the grades of both test series for the material CuZn21Si3P. It is recognisable that the cutting edge radius r_b has a strong influence on the slope m_1 of the compensatory degrees.

The straight lines reflect the relationship to the Kienzle’s cutting force model. The given exponent consequently corresponds to the slope of the specific cutting force k and the given x-value represents the constant $k_{0.5.1}$, in case of this experiments $k_{0.5.1}$ for micro-milling.

![Image](image-url)

Figure 1. SEM images of tool at an magnification of 500x and 1500x

Figure 2. Representation of the influence of cutting edge micro-geometry

Figure 3. Determined special cutting forces k_c for material CuZn21Si3P in comparison from tool group 1 - 2

4. Conclusion

In this paper, the experimental methodology and the evaluation of cutting force prediction in micro-milling, considering the tool micro-geometry, are presented. As a result, the linear relationship between the cutting forces F_c and the depth of cut a_p can be detected in micro-milling. Additionally the results show a good correlation between the predicted and experimental determined cutting forces F_c. The results are a first step of detailed understanding of the influence of cutting edge micro-geometry at micro-milling tools. It is necessary to extend the experiments in future investigations, to get more comprehensive results of the different parts of cutting edge micro-geometry. This includes the cutting edge radius r_b of the major and minor cutting edge, the chipping of the major and minor cutting edge R_c and the surface characteristics of the flute.

References

