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Abstract

Planar magnetic bearings for multi-coordinate drives with high-precision positioning

capabilities often consist of several electromagnetic actuators, using reluctance forces

which levitate a movable platform in six degrees of freedom. This paper shows a test

bench structure for individual testing of a single actuator. Two different test

procedures focus on the identification of force characteristics and the examination of

active control performance. A practical approach of PI state space controller design is

given for a planar magnetic bearing actuator and then verified by measurements. The

presented procedure is suitable to several types of position controlled electromagnets

and not limited to magnetic bearing applications.

1 Test bench

At the test bench (Fig. 1) the electromagnet is attached to the air-guided slider of a

voice coil actuator. A translational motion is only possible in one horizontal direction

(x). A flat armature plate for the electromagnet is fixed to the granite base. The

adjustable force FVC generated by the voice coil actuator pulls the electromagnet

away from the armature plate, whereas the force FEM of the electromagnet

counteracts. By supplying the

electromagnet coil with the

current iEM, the air gap 

between electromagnet and

armature plate can be

controlled. The slider

displacement is measured by a

laser interferometer with a resolution of 0.08 nm. All control algorithms have been

tested on dSPACE hardware with a sample rate of 10 kHz.

Figure 1: Test bench
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2 Plant identificiation

The relation between reluctance force FEM, the current iEM and air gap length  is

nonlinear. It has been precisely measured on the test bench shown in Fig. 1. A PI

position controller adjusts the slider at a constant air gap length . As the force

constant is known, the current iVC of the voice coil indicates the acting force FVC. By

increasing current iEM the reluctance force of the electromagnet is increased. The PI

position controller regulates iVC and thereby FVC to keep the desired position. At

standstill, there are only two forces acting on the slider in opposing directions and the

same amount. FEM equals FVC and iEM is known. Automated multiple measurements

within the operation range of 100…900 μm result in the characteristic curve

FEM (iEM, ).

Besides the nonlinear static behaviour, the plant also consists of time-linear elements,

which are related to the slider (GS,mech(s)) and the transfer function of the power

electronics (GS,el(s)) that controls the current iVC (1).
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The mechanical parameters consist of the slider mass m and the damping factor ρ that

have both been identified by an oscillation experiment including a spring with known

spring constant that is fixed to the slider mass and the armature plate. The test

procedure includes excitation of the spring, sudden release and measurement of the

frequency of oscillation and the decay curve of the oscillation amplitude to get

m = 7.92 kg and ρ = 7.9 Ns/m. The electrical time constant s108 5VT

approximates the measured frequency response of the current regulator within the

current source (power amplifier).

3 Air gap control structure

The presented controller is an enhancement of the PIDD² controller presented in [1].

The whole control structure consists of a linear PI state space controller and the

inverse characteristic curve of the nonlinear part of the plant. This structure allows to

freely choose all zeros and poles of the closed loop system. The state vector x(t) of

the linear PI state space controller includes the slider’s position x, the velocity x and

the acceleration x . As only x is directly measured, the missing components of x(t)
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are calculated by a noise suppressing algebraic derivative estimation algorithm

(ADE) [2]. The output vector y(t) includes only the position x. The actuating variable

u(t) is the scalar force value FEM that is converted to the corresponding electric

current using the inverse nonlinear characteristic curve iEM(FEM, ). As the inverse

nonlinear characteristic curve and the

forward nonlinear behaviour of the plant

compensate each other, a consideration

of the force generating current iEM is not

necessary for the dynamic aspects in

control design. Fig. 2 shows a schematic of the resulting top-level control structure.

The next section shows the pole placement procedure of the complete closed loop

system.

4 Parameter selection for the PI state space controller

The first step to determine all amplification parameters is to convert the system model

into the time domain in matrix notation (2,3).

     tu bxAx tt with u(t) = FEM(t), (2)

   tty xcT  . (3)

The actuating variable u(t) consists of the state feedback ur,SS(t) and the output of the

PI controller ur,PI(t) (4).
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with the control error

         tt xcy T  twtwte . (5)

To calculate the poles of the closed loop system including the PI controller, it is

necessary to extend the state vector x(t) by the integrated control error e(t). With

w(t) = 0 the resulting extended state space formulation is as follows.
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With (4) and (6) we get the complete equation of the PI state space controller (8)
where (7) is still the output equation.
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Figure 2: Air gap control structure
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     tw PI,SSePI,SSe tt bxAx (8)

The state space formulation can be written as the control transfer function:

    PI,SS

1

PI,SSe Is bAcT 


sGCTF (9)

GCTF(s) has one zero placed at n1 = -110 and four poles that have been placed as

follows: p1 = -15000, p2 = -160, p3 = -100, p4 = -30. The corresponding parameters

in GCTF(s) were gained by equating the coefficients. In theory it is possible to freely

determine the dynamic capabilities of the system, practically they are mainly limited

by saturation current and noise level of the amplifier.

The poles can be freely chosen to ensure good system dynamics with practically

applicable parameters. The robustness is supported by the top-level PI controller [3].

The simulation results are largely matching the measured step response (Fig. 3). At

constant reference input, a position standard deviation of 4.72 nm has been reached in

the lab with the PI state space controller. Fig. 4 shows the associated measurement.
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Figure 3: Step response of closed
loop system
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Figure 4: Controlled position at constant
reference input


